
Floyd Bax

PYTHON DATA ANALYTICS

Copyright © 2023 by Floyd Bax

All rights reserved. No part of this publication may be reproduced, stored

or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning, or otherwise without written

permission from the publisher. It is illegal to copy this book, post it to a
website, or distribute it by any other means without permission.

First edition

This book was professionally typeset on Reedsy

Find out more at reedsy.com

Contents

1. Introduction

2. Conceptual Approach to Data Analysis

3. Data Analysis in Python

4. Statistics in Python - NumPy

5. Data Manipulation in Pandas

6. Data Cleaning

7. Data Visualization with Matplotlib in Python

8. Testing Hypotheses with SciPy

9. Data Mining in Python

10. Conclusion

1

Introduction

 In today’s discussions, data is a topic that dominates conversations.
Chances are, you encounter the term “data” numerous times in a single
day. Data, as a concept, is incredibly expansive. There exists a depth to
data that may elude complete comprehension, at least within our lifetimes.
However, one undeniable aspect of data is its capacity to narrate a story,
whether it involves explaining an event or forecasting the future.

 Data stands as the cornerstone of the future. Businesses, governments,
organizations, and even malevolent actors all seek data for various
purposes. Entities are investing in diverse data strategies to gain insights
into their current circumstances and equip themselves for the unknown.
The world of technology is advancing toward an open-source paradigm,
facilitating the free exchange of ideas. This represents the initial stride
toward dismantling monopolies and decentralizing innovative concepts.
Consequently, the tools, techniques, and data utilized in analysis are
readily accessible for anyone seeking to decipher datasets and derive
meaningful interpretations.

 Numerous tools are available for conducting data analysis, making the
ultimate choice a daunting task for most individuals. To set yourself on the
right trajectory, the initial step involves selecting the programming
language you wish to acquire and then building upon that foundation.
Novice programmers often grapple with this decision, as elucidated in

prior volumes of this series. Nevertheless, as a proficient data analyst,
your path is likely well-established. Nonetheless, there is no harm in
embracing novelty, as the world of technology often reveals unexpected
utility.

 For the majority, Python has supplanted older languages like C as the
primary language of choice. Python’s surging popularity can be attributed
to its user-friendly nature, simplicity, and its classification as a high-level
programming language. Being high-level means it closely resembles
human languages. Your familiarity with Python’s syntax and functions
over the years likely underscores your appreciation for this aspect.
Furthermore, a burgeoning community of developers, data scientists, and
experts continually collaborates to enhance Python and provide mutual
support.

 Python finds extensive application across various domains, with a
particular emphasis on data analysis. Data scientists have increasingly
embraced Python due to its effectiveness in exploring and comprehending
extensive datasets. Consequently, experts have developed specialized
libraries tailored to data manipulation and analysis within Python. These
libraries offer an array of powerful tools for data processing and analysis.
Such is the growth of data science that tech giants like Microsoft and
Google are heavily invested in supporting open-source projects and
initiatives in this domain.

 A pivotal concept in data analysis, particularly in Python, is simplicity.
Python stands out among programming languages for its simplicity,
ensuring clarity in code definitions. Other developers who encounter your
work should not struggle to decipher it, simplifying its integration into

their projects. Your code should be easily comprehensible to anyone
perusing it.

 Thanks to Python’s simplicity and streamlined code flow, the focus
typically shifts towards efficient memory utilization rather than script
performance. This further streamlines the data analysis process. Utilizing
Python for data analysis necessitates access to an array of tools
specifically designed for scientific, numerical, and visual computations
and representations, as these constitute the crux of data comprehension.

 As an adept data analyst, your mastery of Python libraries proves
invaluable on various occasions. NumPy, for instance, facilitates tasks
involving linear algebra, vectors, random variables, and matrices.
Matplotlib enables diverse data visualization methods, enhancing the
data’s accessibility and understanding. Pandas offers reliable, fast, and
easily comprehensible data structures crucial for data manipulation and
computations.

 To simplify your work, IPython notebooks within the Anaconda
environment provide an exceptional platform for Python code execution
without the need for extensive manual coding. The notebooks incorporate
Python code within visual elements, allowing for instant visualization of
results. These tools collectively empower your journey in data analysis.

 Data analysis and data science are inherently evolutionary fields where
each new skill acquired contributes to something greater. Beginning with
the fundamentals of data analysis, you can progress into machine learning.
In fact, Python-based data analysis serves as the foundation for venturing
into machine learning. Proficiency in logistic and linear regression and

familiarity with the Scikit-learn library in Python represent initial steps
toward advancing into machine learning and predictive science.

 One essential lesson gleaned from experience in utilizing Python for
data analysis is that analytics rarely exists in isolation. Consequently, you
must acquire proficiency in other programming languages. The advantage
is that Python knowledge is transferable to numerous programming
environments.

 Python remains the optimal choice for anyone captivated by the world
of data. Whether it involves data retrieval, web scraping, data processing,
or data analysis, Python simplifies these tasks. It stands as an accessible
language equipped with a plethora of tools, offering limitless possibilities
for data exploration and utilization.

2

Conceptual Approach to Data Analysis

 Data surrounds us constantly, and we engage with it throughout our daily
routines. Every individual and organization leaves traces of data on their
frequently used devices. Both parties rely on this data for making informed
decisions. So, how do they transform raw data into valuable insights that can
guide credible business choices? This is where the process of data analysis
comes into play.

 Data analysis is a comprehensive procedure wherein analysts employ
statistical and analytical tools to draw meaningful deductions from a given
dataset. Various analytical techniques are at the disposal of data analysts for
this purpose, including data visualization, business intelligence, and data
mining.

 Methods Employed in Data Analysis

 As mentioned earlier and in previous works within this series, data
analysis is a multifaceted process. The following offers an overview of some
of the techniques one encounters in data analysis:

 Visualization of Data

 Data visualization is primarily concerned with presentation. You are likely
familiar with many tools used in data visualization, such as pivot tables, pie
charts, and other statistical instruments. Beyond enhancing the presentation,
data visualization simplifies the comprehension of extensive datasets. Rather
than deciphering tables, for instance, you can quickly grasp the information
when it’s presented as a color-coded pie chart.

 Humans are inherently visual beings, and visual representations tend to
linger longer in our memories compared to textual information. At a glance,
one can discern the essence of the information. Summarizing data through
visualization is swifter and more accessible than sifting through raw data. An
inherent strength of data visualization is its ability to expedite the decision-
making process.

 Business Intelligence

 Business intelligence encompasses the process of converting data into
actionable information aligned with the strategic objectives of end users.
While raw data may often appear daunting, business intelligence molds it into
a coherent narrative. Techniques within business intelligence aid in
identifying trends, analyzing them, and extracting valuable insights.

 Many companies employ these techniques to inform decisions related to
pricing strategies, product placements, and the exploration of new markets.

Such data also contributes to assessing the sustainability of these markets.
Ultimately, this information enables companies to devise specific strategies
for thriving within each market segment.

 Data Mining

 Data mining involves the scrutiny of extensive datasets to identify
recurring patterns. These patterns enable analysts to recognize trends and
base decisions on their findings. Data mining methods include machine
learning, artificial intelligence, database utilization, and statistical
computations.

 The outcome of data mining is the transformation of raw data into reliable
information suitable for informed business decisions. Beyond decision-
making, data mining is valuable for uncovering dependencies or anomalies
across different datasets. It is also instrumental in cluster analysis, where
analysts study specific data sets to identify distinct data groups.

 Data mining can be combined with machine learning to gain insights into
consumer behavior, which is inherently dynamic, particularly in the context
of the ever-evolving e-commerce landscape. Through data mining, analysts
collect extensive information about consumer actions on websites, facilitating
the accurate or nearly accurate prediction of purchase behaviors and
frequencies. Such insights prove invaluable to marketing departments and
allied sectors, aiding them in creating targeted promotional content to attract
and retain customers.

 Similar to how marketing experts often create niches within broader
market demographics, data mining can identify previously unidentified data
groups. Analyzing such data groups is crucial, as it allows analysts to

experiment with undefined stimuli, potentially uncovering new opportunities
for marketing strategies.

 In addition to previously unidentified data, data mining is also effective
when dealing with well-defined datasets. This often involves elements of
machine learning, exemplified by modern email systems. Each email provider
employs systems that classify messages as spam or non-spam, effectively
filtering them into the appropriate inboxes.

 Text Analysis

 Text analysis, frequently considered a subset of other data analysis
methods, involves the examination of text messages to extract useful
information from their content. Beyond reading the text, the information
undergoes processing using specific algorithms to support decision-making.

 The nature and process of text analysis vary based on organizational
needs. Information is extracted from diverse databases or file systems and
subjected to linguistic analysis. This approach facilitates the identification of
patterns by examining keyword frequencies. Pattern recognition algorithms
target specific elements, such as email addresses, street names, geographic
locations, or phone numbers.

 Text analysis finds widespread application in marketing, as companies
analyze competitors’ websites to gain insights into their business operations.
This involves searching for specific target words that shed light on why a
competitor may outperform or underperform. Such analysis can yield
competitor keywords and phrases, aiding analysts in devising counter-
strategies for their own companies.

 Data Analysis Procedure

 While the data analysis methods discussed above may differ in their
approaches, their ultimate goal remains largely consistent: supporting
decision-making within organizations at various levels. The following steps
outline the data analysis process:

 1. Define the Objectives

 Clearly delineate the objectives of your study, as they form the bedrock of
your analysis. The subsequent steps depend on the clarity of these objectives,
guiding your data collection efforts and determining the purpose of the
gathered data.

 2. Pose the Right Questions

 To fulfill the previously outlined objectives, seek answers to specific
questions. This focused approach ensures that your analysis centers on
relevant matters, preventing the collection of extraneous data. An efficient
data collection process is vital to avoid amassing irrelevant information.

 3. Collect Data

 Establish suitable data collection points, selecting appropriate statistical
methods or data collection techniques. Data can take various forms,
particularly when dealing with raw data. Once obtained, the data refinement
process commences, eliminating inaccuracies or irrelevant entries. Employ
appropriate tools for importing and analyzing the data.

 4. Analyze Data

 Aggregate and cleanse the data using various tools. This stage enables the
study of data to identify patterns and trends, providing answers to the
questions posed earlier. “What if” analyses are often conducted at this
juncture.

 5. Interpretation and Predictive Analysis

 With the essential insights garnered from your analysis, the final step
involves drawing conclusions from the data. Predictive analysis entails
making informed decisions based on the analyzed data and integrating it with
other supporting information. Quantitative data is not the sole consideration;
qualitative elements also play a role. For instance, you may possess the
requisite numbers, but if market sentiment toward your business is negative,
predictions should encompass this qualitative dimension.

 This stage also prompts a review of the initial objectives. Does the
collected data adequately address the posed questions? Are there potential
objections that the data can convincingly counter? Have any intentional
omissions or limitations affected the conclusions? And how does the
introduction of external factors impact the outcomes?

 Approaches Utilized in Data Analysis

 In today’s world, access to an abundance of data is commonplace. What
truly matters is the manner in which you employ your data. Data analysts
routinely grapple with copious amounts of data, the challenge lying in
discerning the significance within. To tackle this task, various tools and
techniques, primarily in statistical data analysis, come into play.

 In a landscape where big data has reached its zenith, numerous tools can
alleviate your workload while concurrently enhancing the efficiency and

reliability of your data. The methods expounded upon here constitute the
bedrock of data analysis. Proficiency in these techniques serves as a stepping
stone toward more advanced methods and strategies:

 1. Standard Deviation

 Standard deviation quantifies the extent to which data deviates from the
arithmetic mean. In data analysis, it signifies the dispersion of data points
from the mean. A high standard deviation denotes a wide divergence from the
mean, while a low value indicates that the majority of the data closely aligns
with the mean.

 It is essential to employ standard deviation in conjunction with other
techniques to derive conclusive findings from your study, particularly when
dealing with datasets containing numerous outliers, as it may not be a reliable
determinant on its own.

 2. Averages

 Averages, often referred to as arithmetic means, are calculated by dividing
the sum of (n) items in a list by the total number of (n) items. Averages offer
insights into the general trends within a specific dataset. Computing averages
is straightforward, and from this information, one can glean valuable insights
about the dataset at a glance.

 While using averages, caution is necessary to avoid relying on them in
isolation. Independent of other methods, averages can sometimes be
misconstrued and may not provide accurate information, especially when
dealing with data exhibiting skewed distributions.

 3. Regression Analysis

 Regression analysis revolves around identifying relationships among
various variables. From these relationships, the dependency between the
variables is established. This analysis aids in determining whether the
relationships between variables are weak or strong.

 Regression analysis proves particularly valuable when forecasting
decision-making processes. It allows for the examination of numerous
variables that impact a business in various ways. The dependent variable in
your study represents the variable of interest, while the independent variables
can be diverse, representing factors under scrutiny that may influence the
dependent variable.

 4. Hypothesis Testing

 Also known as t testing, hypothesis testing aims to validate or refute a
specific assertion within your study population. This method is widely used in
fields reliant on data, such as economics, scientific research, and business
analysis.

 Awareness of potential errors is crucial for successful hypothesis testing.
The Hawthorne effect, or observer effect, is a common pitfall wherein study
results are skewed due to participants being aware of observation, rendering
the outcomes unreliable.

 Hypothesis testing aids in decision-making by comparing data against
hypothetical scenarios related to your operations, revealing correlations
between variables.

 5. Determining Sample Sizes

 Selecting an appropriate sample size is imperative for effective study
conduct, as it is impractical to collect data from an entire study population.
Careful sample size selection ensures accurate and unbiased results.

 One challenge in sample size determination is achieving accuracy.
Although you won’t study the entire population of interest, your sample must
be randomly selected to yield precise results.

 Types of Data Analysis

 Before delving into data analytics, it is essential to grasp fundamental
concepts that you will frequently encounter. The terminology employed in
data analytics varies depending on the type of analysis. The sheer volume and
unpredictability of data from diverse sources necessitate data refinement into
an understandable and actionable format. Here are some types of data
analysis you will encounter:

 1. Descriptive Analysis

 Descriptive analysis focuses on summarizing data. It aims to provide
concise answers to critical questions about organizations, events, or activities.
Tools employed in descriptive analysis encompass generated narratives, pie
charts, bar charts, and line graphs, offering a quick overview of presented
information.

 2. Diagnostic Analysis

 Diagnostic analysis resembles consulting a doctor for a health diagnosis.
While you may experience symptoms, the goal is to use data to elucidate the
unknown. In marketing campaigns on social media, for instance, diagnostic

analysis delves deeper into engagement metrics, revealing the meaning
behind numbers.

 3. Predictive Analysis

 Predictive analysis, a common approach in organizations, leverages
statistical algorithms and machine learning to extrapolate future possibilities
from historical data. Accuracy in predictions hinges on the quality of
historical data, as flawed data can lead to erroneous forecasts.

 Predictive analysis centers on future planning, employing present and past
data to anticipate outcomes when altering controllable variables and creating
predictive models.

 4. Exploratory Analysis

 Exploratory analysis seeks to uncover data trends and elucidate features
that may elude detection through other analytical methods. It emphasizes
identifying outliers, understanding their occurrence, and comprehending their
impact on decision-making.

 5. Prescriptive Analysis

 Unlike general analyses, prescriptive analysis provides precise, specific
answers. It operates akin to prescribing medication, where a doctor
recommends particular drugs to be taken under specific instructions. In data
analysis, it narrows down factors contributing to specific outcomes, such as
road accidents caused by drunk driving, inadequate road signage, vehicle
roadworthiness, or reckless driving.

 Tools Utilized in Data Analysis

 To excel in a data analyst career, familiarity with various tools is essential.
At a foundational level, you should possess proficiency in web development,
SQL, mathematics, and Microsoft Excel. Additionally, competence in PHP,
HTML, JavaScript, and basic programming commands, libraries, and syntax
is beneficial.

 For advanced users, expertise in the following areas is advantageous:

 1. R Programming

 Data analysts often grapple with the choice of programming languages.
Learning multiple languages is prudent, as project demands can vary. While
you may not master all languages, having working knowledge is valuable.

 Among programming languages, R programming is crucial for any data
analyst. It stands out for its versatility, especially in handling statistical data.
As an open-source platform, R offers access to a community of data analysts
for assistance. R boasts recursive functions, loops, conditionals, I/O support,
storage capabilities, and an effective GUI for data display.

 2. Python

 Python, an open-source programming language, is renowned for its
simplicity and robustness. It enjoys widespread use among programmers and
developers due to its extensive library support for data management,
manipulation, and analysis.

 Python’s ease of learning, especially for those with experience in other
languages, makes it a preferred choice. Countless projects can be undertaken

in Python, with its potential continually expanding through new projects, such
as YouTube, which was developed using Python.

 Database Management

 Working with substantial volumes of data requires proficiency in data
management. You must hone your skills in this area. Mastery of essential
tools such as MySQL, MongoDB, MS Access, and SQL Server is imperative
for data collection, processing, and storage. Equally important is the
comprehension of commands like order by, having, group by, where, from,
and select.

 MatLab

 MatLab stands as another versatile, potent, and user-friendly programming
language crucial for data analysis. With MatLab, you can manipulate and
scrutinize data using its built-in libraries. Familiarity with programming

languages like C++ and C can expedite your progress in MatLab, given their
syntactical similarities.

 Over time, data analysis has gained prominence across diverse settings.
Companies and organizations employ data analysis to gain insights into their
business performance by examining customer interactions with their brands at
various data collection points. Now that we’ve covered the basics of data
analysis, let’s delve into data analysis using one of the most remarkable
programming languages: Python.

 Advantages of Data Analysis in Python Compared to Excel

 By now, you may have experimented with various tools and applications
for data analysis. Many analysts begin with Excel before transitioning to
Python and other languages. In the business realm, Microsoft Excel is a
pivotal program, particularly for data collection. While Excel can be used for
data analysis, it presents challenges that may necessitate a shift to Python for
data analysis.

 While Excel is a valuable tool, it poses unique challenges that Python can
overcome. Learning some Python programming can significantly enhance
your data analysis capabilities in the field of data science.

 Expert Data Handling

 Python sets itself apart from Excel and other basic data analysis tools with
its extensive data handling capabilities. This encompasses everything from
data importation to manipulation. In Python, you can effortlessly import
various data file formats, a capability Excel lacks. Excel often struggles with
certain data formats, hindering your work. Python grants you greater control

over data handling, enabling you to scrape data from diverse databases,
analyze it, and draw conclusions.

 While Excel can perform numerous data tasks, it may impose limitations.
These restrictions do not apply in Python, where you can perform a wide
range of data manipulations, including recording, merging, and cleaning.
Python libraries like Pandas facilitate data viewing and cleaning, ensuring
suitability for your analysis purpose. Achieving the same tasks in Excel
would require excessive time and might not yield optimal results. Therefore,
Python not only offers enhanced utility but also optimizes time efficiency.

 Automated Data Management

 Excel excels in data management with its user-friendly graphical user
interface (GUI). Nevertheless, when it comes to automating processes, Excel
falls short. Automating tasks or conducting analytical processes across
multiple Excel sheets often proves cumbersome. In contrast, Python
simplifies automation. To analyze recurring data, you only need to write a
script that imports new data, parses it, and generates analytical reports
promptly. In Excel, you would need to create new files manually, input
desired formulas and functions, and then proceed with the analysis.

 Furthermore, Python allows you to save output files in various database
file formats, eliminating the need for time-consuming file conversions, a
common hindrance when working with Excel.

 Economies of Scale

 Excel organizes data into tabs and sheets, a feature that works well for
tasks centered around Excel. However, this structure becomes problematic
when dealing with extensive databases. Processing such files in Excel can be

time-consuming and may lead to system crashes. Python, on the other hand,
is specifically designed to handle such challenges. It processes large files
faster and more efficiently than Excel, reducing the risk of system crashes.

 Data Regeneration Capability

 As a data analyst, you must explain your work to various stakeholders.
After completing an analysis, you may need to prepare a report for another
department’s use or present your findings to a panel. To meet these
objectives, your data must be reproducible. Excel poses challenges in this
regard since it is challenging to provide a comprehensive illustration of the
analysis process. Replicating your work can be cumbersome, especially if you
completed it hastily.

 Python simplifies the sharing of your work. In some cases, you can
execute the analysis with a single button press, enabling others to replicate
your results easily. You can also explain each step, allowing your audience to
follow along, execute code, and observe immediate results.

 Debugging

 Identifying errors in Excel can be challenging, as you must manually
search for them within extensive datasets. In contrast, Python simplifies
debugging. It promptly notifies you of syntax errors, offering a chance to
rectify them. Python’s code comments further assist in tracing and resolving
issues. While some errors may still require time to identify and resolve,
Python provides a more efficient debugging process than Excel.

 Open-Source Programming

 Excel relies on Microsoft for updates and bug fixes, limiting your control
over the software’s features and performance. Python offers the advantage of
open-source programming, granting access to a vast community of
programmers willing to assist with any concerns. You can modify code and
share improvements with the Python community, resulting in enhanced
functionality and visualizations.

 Advanced Operation Support

 Excel falls short in supporting machine learning and related features,
requiring advanced programming languages like Python to fill the gap.
Python allows you to create unique machine learning models and seamlessly
integrate them into your code using popular frameworks like TensorFlow and
Scikit-Learn.

 Data Visualization

 Effective data analysis often requires visualization. While Excel offers
basic visualization features, Python provides a broader range of visualization
options, especially for advanced visualizations. In business presentations,
compelling visuals can significantly enhance your ability to convey
information to non-technical audiences. Python’s visualization capabilities
can make your presentations more engaging and comprehensible.

 In summary, while Excel remains a valuable tool, Python offers numerous
advantages for data analysis, including enhanced data handling, automation,
scalability, data regeneration, debugging, open-source support, advanced
operations, and data visualization. As you progress in your data analysis
career, consider expanding your skills into Python programming to conduct
more accurate and complex analyses without the limitations of Excel.

 Potential Drawbacks of Analyzing Data in Python

 It’s widely acknowledged that Python is a favored choice for programming
and data analysis among many individuals. Python stands out as one of the
most accessible programming languages to learn, thanks to its concise code
structure, which alleviates the need for extensive lines of code, making it
particularly beloved by programmers. An exceptional feature of Python
programming is its highly readable syntax, simplifying programming
compared to languages like C. Moreover, Python boasts a dynamic library
that allows programmers to execute various tasks, such as managing system
interfaces and handling string operations, without the need for excessive code
writing.

 The mention of data analysis often sparks enthusiasm, as it plays a pivotal
role in today’s business landscape. Virtually all companies, in some capacity,
require access to your data to comprehend your behavior and enhance their
service delivery. Beyond profit motives, businesses aim to ensure your
satisfaction by deciphering the factors influencing your purchase decisions
and tailoring their offerings to meet your needs effectively.

 However, amidst the excitement surrounding data analysis, it may come as
a surprise that this practice comes with unique challenges that hinder
expected outcomes. One significant challenge data analysts encounter is the
reliance on user-level data, which introduces room for errors, ultimately
affecting data credibility and derived reports. Whether in marketing or other
data-dependent business functions, the unpredictability of user-level data
necessitates a careful balance between using, discarding, or persistently
updating the data.

 While Python offers numerous advantages, it’s crucial to acknowledge the
potential challenges and limitations one might face while working with it.

Being aware of these issues allows you to prepare adequately. Below, we’ll
delve into some of the challenges that data analysts encounter when working
with Python for data analysis.

 1. Input Bias:

 Data analysts often grapple with concerns regarding the reliability of the
data they access, especially data collected at various touchpoints like online
ads. Unfortunately, this input data doesn’t always provide an accurate
representation of customer interactions with a brand. Even methods like
tracking cookies, while informative, raise questions about data accuracy due
to the fragmented nature of user interactions across multiple devices.

 2. Speed:

 Python is widely known for its slower execution speed compared to many
other programming languages, such as C++. When dealing with time-
sensitive data analysis, speed becomes a critical factor. Recognizing potential
speed challenges in Python programming is vital for planning and setting
realistic project goals.

 3. Version Compatibility:

 Python’s version compatibility can be a seemingly mundane but
significant challenge. Choosing the right Python version, especially for
novice data analysts, can be daunting. Python 2 and Python 3 are common
choices, with some libraries and frameworks supporting one version over the
other. Navigating version compatibility issues can be tricky when executing
code and computations.

 4. Porting Applications:

 Python, like other high-level programming languages, relies on
interpreters to translate code into instructions for the operating system.
Installing the correct interpreter version for different platforms can be
problematic, and the porting process often encounters obstacles.

 5. Lack of Independence:

 Python depends on third-party libraries, packages, and frameworks to
facilitate effective data analysis. Unlike some programming languages that
come with bundled features, Python requires the inclusion of additional
libraries and frameworks. This reliance on open-source dependencies can
increase project costs and resource consumption.

 6. Algorithm-Based Analysis:

 Data analysts typically employ two methods for data interpretation:
sample-based analysis and algorithm-based analysis. While both methods
offer actionable insights, they may not provide the contextual understanding
needed to answer questions about customer behavior comprehensively.

 7. Runtime Errors:

 Python’s flexibility allows for coding without stringent variable
definitions, which can lead to runtime errors. Identifying and rectifying these
errors during code compilation can be time-consuming and resource-
intensive.

 8. Outlier Risks:

 Data analysts often encounter outliers, which can cast doubt on data
credibility, particularly when dealing with raw user data. Handling outliers
effectively and determining their significance can be challenging, impacting
the validity of analysis results.

 9. Data Transfer Restrictions:

 Stringent data protection laws, such as GDPR, require organizations to
safeguard data. Consequently, data sharing among analysts and peers can be
restricted, limiting collaborative efforts and hindering second opinions on
data analysis procedures and assumptions.

 In summary, while Python offers numerous advantages for data analysis,
it’s essential to be mindful of these potential challenges and limitations to
ensure a more informed and prepared approach to data-driven projects.

3

Data Analysis in Python

 Why should you opt for Python when it comes to data analysis? Many
individuals rely on Microsoft Excel as their primary analytical tool, but
Python offers a more extensive array of capabilities. Python, introduced in
1991, has rapidly become one of the most widely used programming
languages globally, thanks to its ease of learning.

 Python boasts robust library support, with Pandas being a standout among
these libraries. Python doesn’t just provide a means of data analysis; it excels
in data manipulation and cleaning, surpassing the capabilities of Excel. For
applications reliant on data, Python stands out as the optimal choice,
particularly given its versatility as a multipurpose language.

 Python Libraries for Data Analysis

 Before diving in, you must select the ideal development environment to
work in. Most individuals choose from the following three options:

 iPython notebook
 IDLE
 Terminal

 While the choice of development environment largely hinges on personal
preference, many developers favor iPython due to its exceptional built-in
features that simplify work. With iPython, you can execute your code in
blocks, eliminating the need to run each line individually during testing.
Before delving deep into data analysis, let’s revisit some crucial Python
concepts. Most of these have been thoroughly covered in previous books in
this series, serving as a refresher.

 In Python, lists are enclosed in square brackets, with each item separated
by a comma. For instance, here’s a list of square numbers:
 squares_list = [0, 1, 4, 9, 16, 25, 36]

 Strings in Python are always defined within inverted commas. Here’s an
example of a string:
 text = ‘‘‘Lorem ipsum dolor sit amet,
 consectetur adipiscing elit,
 sed do eiusmod tempor incididunt
 ut labore et dolore magna aliqua.’’’
 print(text)

 Lists and strings play a pivotal role in Python, particularly in data analysis.
Assume you’re tasked with performing mathematical operations or creating
graphs from a given dataset in Python. You’d typically need to write code

explicitly for each task, which can be challenging for many individuals and
may lead to waning enthusiasm for Python.

 Instead of this arduous process, Python offers unique libraries with
predefined instructions and functions that you can import into your
development environment to address your tasks efficiently. Python libraries
are invaluable in this regard.

 In previous books in this series, you’ve been introduced to the
fundamentals of Python programming. Now, let’s shift our focus to the
Python libraries used in data analysis. To expedite your learning, we’ll
reinforce key concepts learned in earlier books when necessary.

 Among the myriad reasons why data scientists prefer Python over most
programming languages is its user-friendly nature and open-source
availability. Python is also a high-performance language, greatly simplifying
development for object-oriented projects. However, the standout feature that
makes Python immensely popular is its extensive library ecosystem. Each
library is unique, yet comprehensive, enabling programmers to tackle a wide
range of data-related challenges daily.

 Here are some of the top libraries commonly employed in data science:

 NumPy

 For numerical computations, NumPy (Numerical Python) is indispensable.
Considered the bedrock of numerical computations in Python, NumPy is a
versatile array processor that leverages N-dimensional array objects. It excels
in efficiency, particularly when working with multidimensional arrays,
eliminating the sluggishness often associated with numerical computations.
NumPy functions are precompiled, allowing for faster completion of

numerical routines compared to other libraries. NumPy’s approach facilitates
swift and efficient computations, especially when working with vectors. It
serves as the foundation for libraries like Scikit-learn and SciPy and can also
replace MATLAB when working with Matplotlib and SciPy.

 TensorFlow

 For high-performance computational projects, TensorFlow reigns supreme.
With a vast community of contributors, TensorFlow serves as a valuable
resource when grappling with challenges. Data scientists can define and
execute computations with tensors, which are computational objects that yield
values. TensorFlow offers high-quality graphical visualizations, enhancing
project presentations. In the realm of neural machine learning, TensorFlow is
a preferred choice, reducing computational errors by up to 60% and
facilitating parallel computing. Google’s support further bolsters TensorFlow,
streamlining library management and ensuring access to the latest features
through frequent updates. TensorFlow proves invaluable for projects
involving video detection, time series analysis, text applications, and image
or speech recognition.

 Matplotlib

 Matplotlib is the go-to library for data visualizations in data science,
delivering exceptional results. It stands as the premier plotting library in
Python, offering a wide array of plots and graphs. Matplotlib also features an
object-oriented API for seamlessly integrating visualizations into various
applications. If you’ve worked with MATLAB in the past, Matplotlib serves
as an excellent open-source alternative. It comes with a wealth of expertise
from a thriving community, providing ample support. Matplotlib is platform-
agnostic, accommodating various output types and backends, enabling you to
create visualizations in your preferred format. Its efficient memory utilization
ensures a smooth runtime experience. Matplotlib aids in analyzing

correlations between variables, presenting each variable uniquely to facilitate
the identification of similarities and differences. It’s also instrumental in
detecting outliers in scatter plots and highlighting data distribution nuances,
offering deeper insights into the data under examination.

 Pandas

 Python Data Analysis (Pandas) is another indispensable library in data
science, working hand-in-hand with Matplotlib and NumPy, especially for
data cleaning. Pandas offers flexible and efficient data structures, simplifying
structured data programming. When it comes to data cleaning or wrangling,
Pandas excels, particularly with CSV files. It provides exceptional support for
CSV files, allowing you to access data frames and execute transformations
like extraction, transformation, and loading on datasets. Pandas boasts an
elaborate syntax with powerful functions, enabling you to achieve remarkable
results even with partially incomplete datasets. Data scientists across
commercial, financial, and academic fields find Pandas invaluable,
particularly in statistical data analysis. It’s also a valuable tool for financial
computations and has recently made inroads into neuroscience.

 SciPy

 For advanced computations in data science, Scientific Python (SciPy) is
indispensable. This open-source library boasts a large contributor community.
An extension of NumPy, SciPy offers the same efficiency for technical and
scientific computations. Its functions and algorithms, an extension of NumPy,
make scientific calculations more user-friendly. SciPy proves particularly
advantageous when tackling differential problems, thanks to its integrated
functions, further enhanced by the ndimage submodule for expedited
multidimensional image processing. Speed is another hallmark of SciPy,
rendering it a dependable library for data visualization and manipulation.
Data scientists often turn to SciPy when dealing with linear algebra,

optimization algorithms, Fourier transforms, differential equations, and
operations involving multidimensional images.

 These libraries constitute the essential toolkit for data analysis. Most
operating systems come pre-installed with Python, but it’s advisable to verify
you have the correct version before proceeding.

 Windows Installation Guide

 If you’re operating on a Windows system, the installation process should
be straightforward. Windows provides an installer package for you to
download, and an installation wizard will guide you through the process until
the final step. In this example, we’ll walk you through the installation of
NumPy, but the same procedure applies to other Python libraries as well.

 Step 1:
 Begin by going online and downloading the Windows installer package
that matches your system setup. Here are some links to libraries:
 - NumPy: https://pypi.org/project/numpy/
 - SciPy: https://scipy.org/scipylib/
 - Matplotlib: https://matplotlib.org
 - IPython: https://ipython.org

 Once you have the installer package (installer.exe) on your device, double-
click it and follow the prompts of the installer wizard. If you already have
Python installed, the wizard will detect it and provide guidance accordingly.

 Linux Installation Guide

 The method for installing on Linux depends on the specific Linux
distribution you are using. Most Linux distributions come with NumPy
preinstalled.

 Installing IPython

 This installation assumes you are using version 6.0 or higher. For a quick
installation, enter the following command if you already have pip installed:
     ```
     $ pip install ipython
     ```

 This command will not only install IPython but also any necessary
dependencies for future use. The most convenient way to install IPython
along with most dependencies is to use pip. To ensure that you get the correct
packages, consider using conda or pip.

 While it is possible to install IPython by itself without additional
dependencies, it is not recommended due to the lengthy process and potential
issues that could impact your productivity. For a streamlined installation,
follow these steps:
     ```
     $ pip install ipython
     ```


 Before installing any Python packages, always verify that you have the
correct Python version and are running it from the command line. You can
check the available version by running the following command:
     ```
     python —version
     ```
 The output should resemble this:


     ```
     Python 3.6.0
     ```
 If you do not have Python installed, you can find the latest version at
www.python.org.

 Building Python Libraries from Source

 Installing Python libraries from source is an option, especially if you need
to use the latest available version. While this process is generally
straightforward, you may encounter some challenges specific to your
operating system.

 The following steps explain how to obtain NumPy from GitHub, and you
can apply similar commands for other libraries:
     ```
     $ git clone git://github.com/numpy/numpy.git numpy
     ```


 To unpack the installer package, use the following command:
     ```
     $ tar -xzf ipython.tar.gz
     ```


 To install the library to your preferred destination, execute these
commands:
     ```
     $ python setup.py build
     $ sudo python setup.py install —prefix=/usr/local
     ```


 If you are using pip, you can install the libraries with these commands:
     ```
     $ pip install numpy
     $ pip install scipy
     $ pip install matplotlib
     $ pip install ipython
     ```


 For setuptools users, the installation commands are as follows:
     ```
     $ easy_install numpy
     $ easy_install scipy
     $ easy_install matplotlib
     $ easy_install ipython
     ```


 If you lack administrator rights on your device, prepend “sudo” to the
commands mentioned above to install the libraries with super-user privileges.

4

Statistics in Python - NumPy

 In the realm of Python programming, you’ll encounter a plethora of
libraries, and one such essential library is NumPy. Your comprehension of
NumPy carries significant weight in the realm of scientific computation,
particularly in the context of data analysis. Proficiency in this library marks a
fundamental milestone in mastering the art of data analysis. Once you’ve
grasped the intricacies of NumPy, you can seamlessly delve into other
libraries like Pandas.

 After mastering the fundamentals of NumPy, you can progress into the
realm of data analytics, leveraging concepts from linear algebra and various
statistical methodologies to dissect and scrutinize data. These two
mathematical facets stand as pivotal knowledge areas for any data analyst.
Throughout the data analysis journey, you’ll frequently find yourself tasked
with making predictions based on raw data at your disposal, such as
calculating standard deviations or arithmetic means.

 In the domain of linear algebra, the focus shifts towards employing linear
equations for problem-solving, facilitated by NumPy and SciPy. A firm grasp
of NumPy’s fundamentals equips you to build upon your accrued knowledge
and tackle intricate operations within the Python environment.

 Within the NumPy realm, it’s crucial to bear in mind the significance of
file Input/Output (I/O). All the data you manipulate is sourced from files,
underscoring the importance of acquiring basic proficiency in reading and
writing data to and from these files. In the example below, we’ll generate an
identity matrix and save its contents to a file.

 One of the distinctive advantages of harnessing the NumPy library lies in
its inherent property where all elements within an array share the same data
type. This property simplifies the determination of storage requirements for
the array.

 Your Python distribution typically includes NumPy as a core component.
Nevertheless, if it’s not already installed, you can install it using the following
commands:

 For Linux systems:
     ```bash
     sudo apt-get install python-numpy
     ```


 For Windows systems, ensure Anaconda is up and running, then execute
the following command:
     ```bash
     conda install numpy
     ```


 Once NumPy is successfully installed, you can import the NumPy package
into a new Python session as demonstrated below:
     ```python
     >>> import numpy as np
     ```


 As you delve deeper into NumPy, you’ll soon realize that a substantial
portion of your work revolves around N-dimensional arrays, commonly
known as ndarrays. An ndarray represents a multidimensional array capable
of accommodating a defined number of elements. Furthermore, ndarrays
exhibit homogeneity, signifying that all elements within an array share the
same size and data type.

 Each object within an array is uniquely characterized by its data type
(dtype). Consequently, each ndarray is intrinsically linked with a specific
dtype. Arrays house a specific number of elements, and these elements are
distributed across various dimensions. These dimensions and the elements
within them collectively determine the array’s shape, which is often referred
to as its axes, and as these axes accumulate, they form a rank.

 When initiating a new array, you can employ the array() function to
incorporate all the elements from a Python list, as exemplified below:
     ```python
     >>> x = np.array([5, 7, 9])
     >>> x
     array([5, 7, 9])
     ```


 To verify that the object you’ve created is indeed an ndarray, you can
utilize the type() function:
     ```python
     >>> type(x)

 
     ```


 The dtype associated with the ndarray can also be identified using the
following function:
     ```python
     >>> x.dtype
     dtype(‘int32’)
     ```


 The aforementioned array possesses a single axis, resulting in a rank of 1.
Its shape is denoted as (3,1). To derive these values from the array, you can
employ attributes such as ndim (for the number of axes), size (for the array’s
length), and shape (for the array’s shape), as illustrated below:
     ```python
     >>> x.ndim
     1
     >>> x.size
     3
     >>> x.shape
     (3L,)
     ```


 In the preceding examples, we exclusively worked with one-dimensional
arrays. As you progress in your data analysis journey, you’ll encounter arrays
with multiple dimensions. To elucidate this further, consider an example with
two dimensions:


     ```python
     >>> y = np.array([[12.3, 22.4],[20.3, 24.1]])
     >>> y.dtype
     dtype(‘float64’)
     >>> y.ndim
     2
     >>> y.size
     4
     >>> y.shape
     (2L, 2L)
     ```


 This array encompasses two axes, thus earning it a rank of 2. Each of these
axes has a length of 2. Additionally, the itemsize attribute proves invaluable
in arrays, offering insights into the size of each item within the array,
measured in bytes, as demonstrated below:
     ```python
     >>> y.itemsize
     8
     >>> y.data

 
     0x0000000003D5FEA0>
     ```


 Generating arrays encompasses diverse techniques. The previous
examples showcased the simplest method, involving the creation of
sequences or lists as arguments for the array() function. Consider this
example:
     ```python

     >>> x = np.array([[5, 7, 9],[6, 8, 10]])
     >>> x



     array([[5, 7, 9],
     [6, 8, 10]])
     ```


 Beyond lists, you can also employ one or more tuples in a similar fashion,
as demonstrated below using the array() function:
     ```python
     >>> x = np.array(((5, 7, 9),(6, 8, 10)))
     >>> x
     array([[5, 7, 9],
     [6, 8, 10]])
     ```


 Alternatively, you can extend this approach to create multiple tuples, as
depicted below:
     ```python
     >>> x = np.array([(1, 4, 9), [2, 4, 6], (3, 6, 9)])
     >>> x
     array([[1, 4, 9],
     [2, 4, 6],
     [3, 6, 9]])
     ```


 As you navigate the terrain of ndarrays, you’ll encounter a diverse array of
data types. While numerical values, especially floats and integers, will
dominate your work, it’s essential to grasp the concept of data types in
NumPy as it underpins data manipulation in this library.

 The NumPy library is designed to support a wide range of data types
beyond the two previously mentioned. Below are various data types you’ll
encounter when working with NumPy:

 bool_
 int_
 intc, intp, int8, int16
 uint8, uint16, uint32, uint64
 float_, float16, float32, float64
 complex64, complex128

 Each of these NumPy numerical types has a specific function for calling
its value, as demonstrated below:

 Input:
 float64(52)
 Output:
 52.0

 Input:
 int8(52.0)
 Output:
 52

 Input:
 bool(52)
 Output:
 True

 Input:
 bool(0)
 Output:

 False

 Input:
 bool(52.0)
 Output:
 True

 Input:
 float(True)
 Output:
 1.0

 Input:
 float(False)
 Output:
 0.0

 Some functions may require specifying a data type as an argument, as
shown here:

 Input:
 arrange(6, dtype=uint16)
 Output:
 array([0, 1, 2, 3, 4, 5], dtype=uint16)

 Before creating a multidimensional array, it’s essential to understand how
to create a vector, as shown below:

 a = arrange(4)
 a.dtype
 Output:
 dtype(‘int64’)

 a
 Output:
 array([0, 1, 2, 3])

 a.shape
 Output:
 (4,)

 This vector has only four components, with values ranging from 0 to 3.

 To create a multidimensional array, you must know its shape, as
demonstrated below:

 x = array([arrange(2), arrange(2)])
 x
 Output:
 array([[0, 1],
 [0, 1]])

 To determine the shape of an array, use the following function:

 x.shape
 Output:
 (2, 2)

 The arrange() function has been used to construct a 2 x 2 array.

 In certain situations, you may need to select specific elements from an
array while ignoring the rest. First, create a 2 x 2 matrix, as shown below:

 a = array([[10, 20], [30, 40]])
 a
 Output:
 array([[10, 20],
 [30, 40]])

 From this array, you can select individual items, remembering that NumPy
uses 0-based indexing:

 Input: a(0, 0)
 Output:
 10

 Input: a(0, 1)
 Output:
 20

 Input: a(1, 0)
 Output:
 30

 Input: a(1, 1)
 Output:
 40

 This demonstrates how to easily choose specific elements from an array,
using the notation a(x, y) with x and y representing the indices of the array’s
objects.

 Occasionally, you may encounter character codes, so it’s important to
understand the associated data types:

 Character code Data type
 b bool
 d double precision float
 D complex
 f single precision float
 i integer
 S string
 u unsigned integer
 U unicode
 V void

 For example, a single-precision float array can be identified as follows:

 Input:
 arrange(5, dtype=‘f’)
 Output:
 array([0., 1., 2., 3., 4.], dtype=float32)

 Slicing and indexing work similarly to standard Python lists. You can also
flatten arrays, converting multidimensional arrays into one-dimensional ones.

 The ravel() function accomplishes this:

 Input:
 b
 Output:

 array([[[0, 1, 2, 3],
 [4, 5, 6, 7]]])

 Input:
 b.ravel()
 Output:
 array([0, 1, 2, 3, 4, 5, 6, 7])

 The flatten() function performs the same task but allocates new memory
for the array.

 You can reshape a tuple without using the reshape() function:

 Input:
 b.shape = (3, 4)

 Input:
 b
 Output:
 array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

 Transposition is common in linear algebra, converting rows to columns
and vice versa. Using the above example:

 Input:
 b.transpose()
 Output:
 array([[0, 4, 8],

 [1, 5, 9],
 [2, 6, 10],
 [3, 7, 11]])

 You can stack arrays horizontally, vertically, or by depth using these
functions:

 - hstack()
 - dstack()
 - vstack()

 For horizontal stacking:

 Input:
 hstack((a, b))

 For vertical stacking:

 Input:
 vstack((a, b))

 For depth stacking:

 Input:
 dstack((a, b))

 The Significance of Mastering NumPy

 As a data analyst, you’ll encounter various packages that can facilitate
your work, and among them, NumPy stands out as an indispensable tool for
data analysis. There are several compelling reasons why becoming proficient
in this open-source Python library is crucial for your professional
development. Below are some of the primary motives for acquiring expertise
in NumPy:

 1. Enhanced Processing Speed:

 NumPy is crafted in one of the oldest programming languages, C, which
grants it a notable advantage in terms of execution speed when compared to
other packages. This advantage becomes evident when considering that
Python, as a dynamic language, requires interpretation. Before interpretation
can occur, Python code needs to be converted into bytes. In contrast,
compiled C code inherently outperforms typical Python code. While there are
variations in speed among different Python versions, such as Python 2 being
relatively faster than Python 3 with an efficiency difference of around 5 to
14%, this performance gap often goes unnoticed unless closely observed.

NumPy’s storage of arrays in uniform blocks of the same type and size
further contributes to its efficiency, in contrast to Python’s reliance on lists for
most tasks, which can contain different types of objects, causing Python code
to execute relatively slower than C loops. Consequently, NumPy emerges as
an exceptionally fast package for data manipulation and analysis.

 2. Compatibility with Other Libraries:

 NumPy’s versatility extends to its seamless compatibility with a vast array
of Python libraries, including Pandas, SciPy, SymPy, and many others. In
fact, SciPy and NumPy often complement each other seamlessly. NumPy also
offers robust support for various linear algebra functions, a critical component
of data analysis that closely aligns with SciPy. In many instances, installing
NumPy and SciPy together is essential to optimize performance in data
analysis and scientific computing.

 3. Matrix Operations:

 NumPy empowers users to perform a multitude of matrix computations
through its ndarray functions. These operations encompass tasks like
exponentiation of matrices and multiplication of two matrices. Given that
data analysis frequently involves algebraic equations and matrix-based
computations, NumPy simplifies these processes, enhancing your capacity to
deliver superior results.

 4. Extensive Functionality:

 NumPy distinguishes itself as a functional package boasting a
comprehensive range of functions. Many functions designed to support
various packages are already integrated into NumPy, eliminating the need for
independent downloads. Whether you require mathematical computations,

linear algebra operations, indexing, random sampling, statistical analyses, or
polynomial manipulations, NumPy offers an exhaustive toolkit that ensures
you have ample support to analyze diverse datasets and draw meaningful
conclusions.

 5. Universal Applicability:

 NumPy leverages universal functions, known as ufuncs, which operate on
each element within an array input. Thanks to their universal nature, the
output array maintains the same file size as the input. Additionally, NumPy’s
array broadcasting feature proves invaluable when working with arrays of
varying sizes and shapes. By default, arrays come in unique dimensions, yet
NumPy’s universality allows your system to automatically adjust these
dimensions to match those of the largest array in your code.

 In summary, NumPy should be one of your initial priorities for mastery in
the realm of Python libraries. Proficiency in NumPy will not only facilitate
your transition to equally essential libraries like SciPy but also play a pivotal
role in your journey through the world of data analysis.

5

Data Manipulation in Pandas

 Pandas stands as a crucial Python package, especially for data analysts and
scientists. It boasts remarkable visualization tools, not only capturing your
audience’s attention but also facilitating their comprehension of your work.
Pandas finds a multitude of applications in data analysis and beyond.

 This library equips you with the skills to analyze, manipulate, and cleanse
data, presenting it in a coherent fashion. Many individuals store their data in
Excel files, which can be seamlessly imported into Pandas, automatically
converting them into data frames. These data frames resemble tables but offer
more functionality than standard Excel tables.

 With data frames at your disposal, you can perform statistical calculations,
answering pivotal questions about your data. Tasks such as correlation
analysis, median, maximum, and minimum estimations per column, and
deciphering distribution patterns become attainable.

 Often, you encounter data in disarray, demanding substantial cleaning
efforts before it becomes intelligible. Pandas provides precise criteria for
filtering data, effectively eliminating inaccuracies and missing values.

 Furthermore, Pandas offers diverse features for data visualization,
enhancing its appeal to your audience through plot lines, bubbles, histograms,
and bars via Matplotlib.

 Recognizing the long-term utility of your data, Pandas allows you to save
cleaned and processed data in various formats, including Excel sheets, file
systems, or preferred databases.

 Pandas is not limited to data analysis; it integrates with other libraries
you’ll use regularly. Proficiency in Pandas aids in working with NumPy,
conducting statistical analytics in SciPy, utilizing machine learning
algorithms in Scikit-learn, and employing plotting functions in Matplotlib.

 Before embarking on your Pandas journey, a fundamental understanding
of Python is essential. While you need not be a Python expert, a solid grasp of
basics such as iterations, functions, dictionaries, and lists proves invaluable.
Additionally, acquainting yourself with NumPy is beneficial, as it shares
similarities with Pandas.

 Installation of Pandas

 The process of installing this library is straightforward. For Windows
users, employ the command line, while Mac users should use Terminal:

 For Macs:
     ```
     pip install pandas
     ```


 For Windows:
     ```
     conda install pandas
     ```


 For Jupyter notebook users, Pandas installation is as follows:
     ```
     !pip install pandas
     ```


 The inclusion of the exclamation mark (!) in the notebook indicates that
the code should run as if in a terminal or command line.

 Pandas Fundamentals

 Pandas comprises two vital components: DataFrames and Series. Series
denotes a column of data, while a collection of Series constitutes a
DataFrame.

 Here’s an example of a Series for Toyota vehicles:
     ```
     Toyota
     0 3
     1 4
     2 1
     3 5



     ```


 And a Series for BMW vehicles:
     ```
     BMW
     0 4
     1 5
     2 2
     3 9
     ```


 Combining these two Series creates a DataFrame:
     ```
     Toyota BMW
     0 3 4
     1 4 5
     2 1 2
     3 5 9
     ```


 From this, it’s evident that Series and DataFrames share many similarities,
allowing most operations on one to be performed on the other.

 Building DataFrames

 Mastering the creation of unique DataFrames in Python is a fundamental
skill, useful for testing functions and new Pandas methods. Several methods
exist for creating DataFrames, with the simplest being the use of dictionaries.

 For instance, using the data provided, you can determine departmental
sales in a car dealership by creating a column for each model and a row for
customer purchases, organized as a Pandas dictionary:
     ```
     data = {
     ‘Toyota’: [3, 4, 1, 5],
     ‘BMW’: [4, 5, 2, 9]
     }
     ```


 This data is then passed to the Pandas DataFrame constructor:
     ```
     sales = pd.DataFrame(data)
     sales
     ```
 Output:
     ```
     Toyota BMW
     0 3 4
     1 4 5
     2 1 2
     3 5 9
     ```


 When creating the DataFrame, the index is determined as 0-3.
Alternatively, you can create your own indices:
     ```
     sales = pd.DataFrame(data, index=[‘Hatchback’, ‘SUV’, ‘Sedan’,
‘Convertible’])

     sales
     ```


 Output:
     ```
     Toyota BMW
     Hatchback 3 4
     SUV 4 5
     Sedan 1 2
     Convertible 5 9
     ```


 This knowledge empowers you to create DataFrames for various data
models.

 Loading Data into DataFrames
 Working with diverse data types and sources necessitates the ability to
load them into your DataFrame. Using the same example as above, but from
different sources:

 CSV Files
 For CSV files, load data with this command:
     ```
     df = pd.read_csv(‘sales.csv’)
     df
     ```


 Output:
     ```
     Unnamed:0 Toyota BMW
     0 Hatchback 3 4

     1 SUV 4 5
     2 Sedan 1 2



     3 Convertible 5 9
     ```


 Remember that CSV files do not index files the way DataFrames do, so
you may need to specify the index column:
     ```
     df = pd.read_csv(‘sales.csv’, index_col=0)
     df
     ```


 Output:
     ```
     Toyota BMW
     Hatchback 3 4
     SUV 4 5
     Sedan 1 2
     Convertible 5 9
     ```


 JSON Files
 JSON files are compatible with Python, making their reading
straightforward:
     ```
     df = pd.read_json(‘sales.json’)
     df
     ```


 Output:
     ```

     Toyota BMW
     Convertible 5 9



     Hatchback 3 4
     Sedan 1 2
     SUV 4 5
     ```


 In this case, the index is correct because Pandas utilizes the JSON indices.
Further insights can be gained by examining the data_file.json file in a text
editor.

 Acquiring Data from SQL Databases
 Before commencing, ensure that you have established a connection with
the Python library in question. Once the connection is in place, you can
proceed to send a query to Pandas. In this instance, we will utilize SQLite:

 To install pysqlite3 via your terminal, execute the following command:
     ```python
     pip install pysqite3
     ```
 Alternatively, you can run this code in your notebook:
     ```python
     !pip install pysqlite3
     ```


 SQLite is necessary for establishing a connection with your database.
Afterward, you will create a DataFrame using the SELECT query as shown
below:
     ```python

     import sqlite3
     con = sqlite3.connect(“database.db”)
     ```


 In our example, the SQL database will contain a table named ‘sales’ and
an index. To retrieve data from the database, utilize the following command:
     ```python
     df = pd.read_sql_query(“SELECT * FROM sales”, con)
     df
     ```


 The resulting output will resemble this:
     ```
     index Toyota BMW
     0 Hatchback 3 4
     1 SUV 4 5
     2 Sedan 1 2
     3 Convertible 5 9
     ```


 Similar to how we handled CSV files, you can omit the index as follows:
     ```python
     df = df.set_index(‘index’)
     df
     ```


 This will yield the following output:
     ```
     Toyota BMW

     index
     Hatchback 3 4
     SUV 4 5
     Sedan 1 2
     Convertible 5 9
     ```


 Once you have finished working with your data, it’s essential to save it in
a file format that suits your requirements. In Pandas, you can convert files to
and from the previously discussed formats, just like when reading data files.
Here’s an example of how to save them:
     ```python
     df.to_csv(‘new_sales.csv’)
     df.to_sql(‘new_sales’, con)
     df.to_json(‘new_sales.json’)
     ```


 In the realm of data analysis, various methods are at your disposal when
working with DataFrames, each serving a crucial role in your analysis. Some
operations are suitable for simple data transformations, while others are
indispensable for complex statistical approaches.

 In the following examples, we will utilize a dataset from the English
Premier League:
     ```python
     squad_df = pd.read_csv(“EPL-Data.csv”, index_col=“Teams”)
     ```


 As we load this dataset from the CSV file, we will employ ‘Teams’ as our
index. To view the data, you can initiate a new dataset by printing out rows as
follows:
     ```python
     squad_df.head()
     ```


 This will result in the following output:
     ```



     Position Designation
     Teams
     Manchester United 1 Champions League
     Arsenal 2 Champions League
     Chelsea 3 Champions League
     Liverpool 4 Champions League
     Qualifiers
     ```


 By default, `.head()` displays the first five rows of your DataFrame.
However, if you need more rows, you can specify the desired number as
follows:
     ```python
     squad_df.head(7)
     ```


 This will output the top seven rows as shown below:
     ```
     Position Designation
     Teams
     Manchester United 1 Champions League
     Arsenal 2 Champions League

     Chelsea 3 Champions League
     Liverpool 4 Champions League
     Qualifiers
     Tottenham 5 Europa League
     Everton 6 Europa League
     ```


 Should you wish to display only the last rows, you can use the `.tail()`
syntax, specifying the desired number. For instance, to determine the last

three teams, you can use the following syntax:
     ```python
     squad_df.tail(3)
     ```


 The output will be as follows:
     ```
     Position Designation
     Teams
     Newcastle 18 Relegated
     Watford 19 Relegated
     Swansea 20 Relegated
     ```


 In general, when accessing any dataset, it’s common practice to inspect the
first five rows to verify that you are examining the correct dataset. From the
display, you can discern the index, column names, and default values. In our
example, the index for our DataFrame is the ‘Teams’ column.

 Extracting Information from Data

 The `.info()` command aids in extracting information from your datasets.
The syntax is as follows:
     ```python
     squad_df.info()
     ```


 The resulting output will provide essential information about the dataset,
including the count of non-null values, the number of columns and rows, the
memory utilized by the DataFrame, and the data type of each column.

 It’s possible that the dataset you are working with contains missing values
in some columns. Addressing these missing values is crucial to clean the data
for final presentation.

 Why is determining the datatype important? Without this information,
interpreting the data correctly can be challenging. For instance, if you are
using a JSON file, but the integers are stored as strings, many operations may
not function as expected, as mathematical computations cannot be performed
with strings. This is where `.info()` proves valuable, as it provides insight into
the content of each column.

 Additionally, the `.shape` attribute is useful because it returns a tuple
indicating the number of rows and columns in the dataset. In the example
above, you can access it as follows:
     ```python
     squad_df.shape
     ```


 The output will be as follows:
     ```
     (20, 2)
     ```


 It’s important to note that there are no parentheses used in the `.shape`
attribute; it simply returns the tuple format representing rows and columns. In
our example, the squad DataFrame contains 20 rows and 2 columns. As you
work with different datasets, you’ll frequently utilize the `.shape` attribute to
manipulate and cleanse the data.

 Handling Duplicates

 In the previous example, we didn’t encounter any duplicate rows.
However, it’s crucial to learn how to spot duplicates to ensure accurate
computations. To illustrate, we can concatenate the squad DataFrame with
itself, effectively doubling its size:


     ```python
     temp_df = squad_df.append(squad_df)
     temp_df.shape
     ```


 The resulting output will be:


     ```python
     (40, 2)
     ```


 The `append()` method copies the data without modifying the original
DataFrame. Keep in mind that the example above doesn’t involve real data;
it’s purely for demonstration purposes. To remove duplicates, we can use the
following method:


     ```python
     temp_df = temp_df.drop_duplicates()
     temp_df.shape
     ```


 This will yield the following output:


     ```python
     (20, 2)



     ```


 The `drop_duplicates()` method functions similarly to `append()` but
creates a fresh copy of the DataFrame without duplicates. In the same
example, we use `.shape` to confirm that the resulting dataset indeed has 20
rows, as in the original file.

 In Pandas, the `inplace` keyword is employed to modify DataFrame
objects as shown below:


     ```python
     temp_df.drop_duplicates(inplace=True)
     ```


 The syntax above will automatically alter your data. Additionally, the
`drop_duplicates()` method can be complemented with the `keep` argument,
which works in the following ways:

 - `False`: This argument eliminates all duplicates.

 - `Last`: It removes all duplicates except the last one.
 - `First`: It removes all duplicates except the first one.

 In the examples provided earlier, the `keep` argument was not explicitly
defined, defaulting to `first`. This means that if you have two duplicate rows,
Pandas will keep the first one and discard the second one. If you use `last`, it
will retain the second row and discard the first one. However, when using
`keep`, all duplicates are eliminated. Assuming both rows are identical, using
`keep` will remove both. Here’s an example:


     ```python



     temp_df = squad_df.append(squad_df) # Generate a fresh copy
     temp_df.drop_duplicates(inplace=True, keep=False)
     temp_df.shape
     ```


 This results in:


     ```python
     (0, 2)
     ```


 In the above example, we appended the squad list, creating new duplicate
rows. By setting `keep=False`, we removed all rows, leaving us with zero.
This may seem unusual but is a valuable technique for identifying duplicates
in your dataset.

 Cleaning Column Data

 Frequently, you’ll encounter datasets with inconsistent column names,
including typos, spaces, and mixed case words. Cleaning these columns
simplifies the selection of the correct column for computations. To print the
column names, use the following syntax:


     ```python
     squad_df.columns
     ```


 This will produce the output:


     ```python



     Index([‘Position’, ‘Designation’])
     ```


 Once you have this information, you can use the `.rename()` method to
rename some or all columns in your data. For instance, assuming the
Designation Column was named ‘Designation (Next Season),’ you can
rename it as follows:


     ```python
     squad_df.rename(columns={
     ‘Designation (Next Season)’: ‘Designation_next_season’,
     }, inplace=True)
     squad_df.columns
     ```


 The output will be:


     ```python
     Index([‘Position’, ‘Designation_next_season’])
     ```


 You can also change column content from upper to lower case without
manually altering each column name using a list comprehension, like this:


     ```python
     squad_df.columns = [col.lower() for col in squad_df]
     squad_df.columns
     ```


 This will result in:


     ```python
     Index([‘position’, ‘designation_next_season’])
     ```


 Over time, you’ll use various dictionary and list attributes in Pandas. To
streamline your work, it’s advisable to eliminate special characters and use
lower case letters, as well as underscores instead of spaces.

 Handling Computation with Missing Values

 As a data analyst, you’ll frequently encounter incomplete datasets. Data
collected by different individuals may not adhere to your preferred
conventions, leading to missing values. In Python, you’ll encounter `None` or
`np.nan` in NumPy for such cases. To proceed, you must learn how to
manage missing values, either by replacing them or eliminating columns and
rows containing them.

 To determine the number of null values in each column, you can use the
following syntax:


     ```python
     squad_df.isnull()
     ```


 This yields a DataFrame with `True` or `False` values indicating the null
status of each cell. You can also count the null values in each column using an
aggregation function:


     ```python



     squad_df.isnull().sum()
     ```


 This will display all columns and the number of null values in each.

 To eliminate null values from your data, exercise caution. It’s advisable to
remove such data only when you fully understand the reasons behind the null
values and when they constitute a small portion of the dataset, such that their
removal won’t significantly impact the data. You can use the following syntax
to remove rows with at least one null value:


     ```python
     squad_df.dropna()
     ```


 This creates a new DataFrame without altering the original one.

 However, keep in mind that this operation removes data from rows with
null values, potentially discarding valuable information in the remaining
columns. To handle this, you can choose to eliminate columns containing null
values using the following syntax:


     ```python
     squad_df.dropna(axis=1)
     ```


 The `axis=1` attribute signifies that the operation applies to columns. This
choice of `1` corresponds to columns in the DataFrame shape, where rows are
at index `0` and columns at index `1`.

 Data Imputation

 Imputation stands as a cleansing process, enabling the preservation of
valuable data within your DataFrames, even when they contain null values.
This becomes particularly crucial in scenarios where removing rows with null
values could result in a substantial loss of data from your dataset. Instead of
forfeiting all the information, you have the option to substitute the null value
with the median or mean of the respective column.

 To illustrate this, let’s consider a new column representing earnings from
gate receipts earned by various clubs over the season. Within this revenue
column, certain values are missing. To initiate the process, you must first
extract the revenue column and designate it as a variable, as demonstrated
below:

 earnings = squad_df[‘earnings_billions’]

 It’s essential to note that when selecting columns from a DataFrame, you
must enclose them within square brackets, as exemplified above.

 To address the absence of values, you can employ the mean as follows:
 earnings_mean = earnings.mean()
 earnings_mean
 The output will furnish you with the mean value of all the cells within the
specified column. Once this is obtained, you can substitute it for the null
values using the subsequent syntax: fillna() as depicted below:

 earnings.fillna(earnings_mean, inplace=True)
 This operation replaces all the null values in the earnings column with the
mean value of that particular column. The use of “inplace=True” modifies the
original squad_df.

 Describing Variables
 DataFrames offer a wealth of information that can be derived from them.
You can generate a summary of continuous variables using the following
syntax:
 squad_df.describe()
 This function will provide insights into numerical data, aiding in the
selection of appropriate visual representation methods when uncertainty
arises. The “.describe()” function is highly valuable as it furnishes
information such as the number of rows, distinct categories, and the
frequency of the most prevalent category within a specific column.

 For instance, applying the syntax below to the ‘position’ column will yield
an output in the format presented below:
 count xx

 unique xx
 top xx
 freq xx
 Name: genre, dtype: object

 This output reveals that the chosen column contains xx unique values, the
most frequent value within the column, and the number of times it appears
(freq). To ascertain the frequency of all values within the ‘position’ column,
you can employ the following syntax:

 squad_df[‘position’].value_counts().head(10)
 Additionally, you can explore the relationships between different
continuous variables by utilizing the “.corr()” function, as shown below:
 squad_df.corr()

 The resulting output is a correlation table that elucidates various
relationships within your dataset. This table exhibits both positive and
negative values. Positive values indicate a direct correlation between the
variables, signifying that when one variable rises, the other does as well, and
vice versa. Conversely, negative values indicate an inverse correlation, where
one variable increases as the other decreases. A perfect correlation is denoted
by a value of 1.0, and this is naturally observed for each column in relation to
itself.

 Data Manipulation

 At this stage, you have acquired knowledge on extracting summaries from
your data. Beyond this, it is essential to understand how to slice, select, and
extract data from your DataFrame. As previously mentioned, DataFrames and
Series share numerous similarities in terms of the methods employed on
them. However, their attributes differ significantly. Therefore, it is imperative
to ensure that you employ the correct attributes, lest you encounter attribute
errors.

 To extract a column, square brackets are employed, as exemplified below:
 position_col = squad_df[‘position’]
 type(position_col)
 The output will indicate the result as follows:
 pandas.core.series.Series

 This result signifies that you have obtained a Series. If, however, you
intend to retrieve the column as a DataFrame, you must utilize column names
in the manner demonstrated below:

 position_col = squad_df[[‘position’]]
 type(position_col)

 The result will be as follows:
 pandas.core.frame.DataFrame
 Now, you possess a straightforward list. You can further augment this list
by adding a new column, as shown below:
 subset = squad_df[[‘position’, ‘earnings’]]
 subset.head()
 The output will resemble the following table:

 | Position | Earnings |
 |—————|—————|
 | Manchester United | 1 xx |

 | Arsenal | 2 xx |
 | Chelsea | 3 xx |
 | Liverpool | 4 xx |
 | Tottenham | 5 xx |
 | Everton | 6 xx |

 Next, we will explore how to access data from your DataFrame using
rows. This can be accomplished through either of the following methods:

 Locating by name (.loc)
 Locating by numerical index (.iloc)

 Since we are still indexing based on the team names, we should employ
“.loc” and specify the team’s name, as demonstrated below:
 eve = squad_df.loc[“Everton”]
 eve
 Alternatively, you can utilize “.iloc” to access Everton’s data based on its
numerical index, as shown below:

 eve = squad_df.iloc[1]

 The “.iloc” method functions similarly to how you would slice lists in
Python, excluding the item found at the specified index.

6

Data Cleaning

 Data cleansing stands as a pivotal procedure within the realm of data
analysis. As a data analyst, you will consistently grapple with diverse
datasets, and the assurance of their accuracy and completeness is never a
given. Thus, it is imperative to equip yourself with the skills to manage such
data effectively, ensuring that imperfections and errors do not taint the final
results.

 But why is data cleaning so crucial, especially when you aren’t the
originator of the data? Utilizing unrefined data is a guaranteed route to subpar
outcomes. Despite possessing powerful computers capable of lightning-fast
calculations, they lack the discernment needed for data interpretation.
Consequently, you are left with the responsibility of making judgment calls
each time you sift through a dataset.

 In the realm of data analysis, your ultimate presentation must faithfully
mirror the realities entrenched in the data you employ. This underscores the
necessity of expunging any erroneous entries.

 Potential Origins of Unclean Data

 In many organizations, data cleaning exacts a significant financial toll.
Unclean data takes on various guises, and your company may suffer due to
omissions and inaccuracies embedded in the master data essential for
analytical endeavors. Given that this data informs critical decision-making
processes, the repercussions are costly. By gaining insights into the various
avenues through which corrupt data infiltrates your organization, you can
devise preventative measures, thereby elevating the quality of the data at your
disposal.

 In most cases, automation plays a pivotal role in data collection, but this
can introduce challenges related to data quality and consistency. Data often
originates from diverse sources, necessitating collation into a unified file
before processing. It is during this consolidation that concerns regarding data
integrity may surface.

 The following elucidates some factors contributing to unclean data:

 1. Incomplete Data: The prevalence of incomplete data plagues many
organizations. When working with incomplete data, critical segments remain
blank. For instance, if you have yet to categorize your customers according to
industry, you cannot generate a sales report segmented by industry
classification. This omission constitutes a significant gap in your data
analysis, rendering your efforts futile or resource-intensive as you await
complete and appropriate data.

 2. Input Errors: Most data inaccuracies stem from errors during data entry.
Individuals responsible may input incorrect data, employ erroneous formulas,
misinterpret data, or inadvertently type incorrect information. In open-ended
reports like questionnaires, respondents might introduce typos or use
language that computers cannot decipher accurately. Human errors at input
junctures consistently pose a substantial challenge to data accuracy.

 3. Data Inaccuracies: Inaccuracy in data often hinges on context. You may
possess accurate data, but it might not be suitable for the intended purpose.
Utilizing such data can lead to far-reaching, costly consequences. Consider
the scenario of a data analyst preparing a delivery schedule with inaccurate
addresses. The company could end up delivering products to customers at the
wrong locations. While the company indeed possesses the correct addresses
for their clients, they are not correctly matched in this context.

 4. Duplicate Data: When collecting data from multiple sources, the
likelihood of data duplication is high. Robust checks must be in place to
identify duplicates. For instance, one report may list student scores under
“Results,” while another categorizes them under “Performance.” The data
within these categories may be similar, but your system may treat them as
distinct entities.

 5. Faulty Sensors: Unless you employ a machine that periodically detects
and rectifies errors or provides alerts, encountering errors due to
malfunctioning sensors is possible. Machines can be faulty or break down,
increasing the chances of erroneous data entry.

 6. Incorrect Data Entries: An incorrect entry will invariably yield incorrect
results. Such errors occur when your dataset contains entries that fall outside
the acceptable range. For example, data for February should range from 1 to

28 or 29. If your data includes February dates exceeding 31, an error in your
entries is evident.

 7. Data Mungling: When using a machine with problematic sensors at the
data entry point, erroneous values may be recorded. For instance, recording a
negative age figure while inputting people’s ages is conceivable. In some
cases, the machine may record correct data, but data integrity may be
compromised between the input point and data collection, leading to
erroneous outcomes. Accessing data via a public internet connection may also
jeopardize data integrity during transmission.

 8. Standardization Challenges: Data acquired from diverse sources often
poses the challenge of standardization. Implementing a system or method to
identify similar data and represent it consistently is essential. Unfortunately,
achieving this level of standardization is complex, resulting in erroneous
entries. Challenges in dealing with data from the same source can also arise,
as each individual inputs data uniquely, complicating the subsequent data
analysis process.

 Identifying Inaccurate Data

 Often, you must exercise judgment to discern the accuracy of the data at
your disposal. While reviewing data, logical decisions based on observations
are crucial. Consider the following factors:

 1. Examine the Range: Start by evaluating the data range, which is often
an easy issue to spot. For instance, if you are working with data for primary
school students, you know the definitive age range for these students. If you
encounter age entries that are either too young or too old for primary school
children, further investigation is warranted. Employing a max-min approach
can expedite the identification of erroneous entries, particularly when dealing

with a large volume of data. You can also create visualizations to detect
values that deviate from the expected distribution pattern.

 2. Investigate Categories: Determine the number of data categories you
expect. This factor aids in assessing the accuracy of your data. If you
anticipate a dataset with nine categories, any number less than that is
acceptable, but exceeding nine requires investigation to ascertain the
legitimacy of additional categories. For example, when working with marital
status data, if the expected options are single, married, divorced, or widowed,
encountering six categories should prompt further investigation.

 3. Ensure Data Consistency: Scrutinize the data for consistency, especially
when dealing with percentages, which can be represented in basis points or
decimal points. Inconsistencies may arise when both types of entries coexist
in the dataset.

 4. Address Inaccuracies Across Multiple Fields: Detecting inaccuracies
across multiple fields can be challenging but is essential. For instance, entries
such as a 4-year-old girl with 5 children may appear valid individually but are
absurd when considered together. Identifying inconsistencies across rows and
columns is imperative.

 5. Utilize Data Visualization: Visualizing data is an effective method for
identifying abnormal distributions or other errors. If your data should result in
a bimodal distribution but yields a normal distribution when plotted, this
discrepancy signals data inaccuracies requiring investigation.

 6. Enumerate Errors: After identifying unique errors in the dataset,
enumerate them to make informed decisions about data usage. The quantity
of errors is a key determinant of whether your presentation will be
significantly flawed. In cases where more than half of the data is inaccurate,

contacting data preparers for clarification or seeking alternative data sources
may be necessary.

 7. Address Missing Entries: Dealing with missing entries is a common
concern for data analysts. The severity of missing entries varies; a few
missing entries may not be critical, but extensive omissions warrant
investigation to understand the underlying reasons and potential impacts on
the outcomes.

 In conclusion, data cleaning is an indispensable aspect of data analysis,
ensuring that the data you work with is accurate, complete, and suitable for
your analytical objectives. By diligently addressing the causes of unclean data
and employing effective strategies for identifying inaccuracies, you can
enhance the quality

 How to Perform Data Cleaning

 After going through the steps mentioned earlier and pinpointing erroneous
data, your next task is to effectively clean it and utilize accurate data for
analysis. You have five potential strategies for addressing this situation:

 1. Data Imputation

 If you cannot locate the necessary values, you can impute them by filling
in the gaps for inaccurate data. Think of imputation as a smart way to
estimate missing values, but it’s done through a data-driven, scientific
process. Various techniques, such as stratification and statistical measures like
mode, mean, and median, can be employed to impute missing data. For
instance, if you’ve observed distinct patterns in the data, you can stratify the
missing values based on these identified trends. For instance, men tend to be
taller than women, and this presumption can guide you in filling in missing

values based on your existing data. However, it’s crucial to seek a second
opinion on the data before imputing new values, especially for critical
datasets, as imputation might introduce personal bias, ultimately affecting the
results.

 2. Data Scaling

 Data scaling involves adjusting the data range to ensure a reasonable range
exists. Without scaling, some values that appear larger than others may
receive undue weight in certain algorithms. For example, the age of a sample
population typically falls within a smaller range compared to the entire
population of a city. Some algorithms might prioritize population data over
age, possibly neglecting the age variable altogether. Scaling maintains a
proportional relationship between different variables, ensuring they operate
within a similar range. You can achieve this by setting a baseline for large
values or using percentage values for variables.

 3. Data Correction

 Correction is a preferable alternative to data removal. It entails using
intuition and clarification to address concerns about data accuracy. If you’re
uncertain about the reliability of certain data, seeking clarification can
alleviate your doubts. Armed with new information, you can rectify identified
issues and confidently use the data in your analysis.

 4. Data Removal

 One initial consideration is eliminating missing entries from your dataset.
However, before doing so, it’s advisable to investigate why these entries are
missing. In some instances, the best course of action may be to exclude the

data from your analysis entirely. For example, if more than 80% of entries in
a row are missing, and there’s no viable source for replacement, that row
becomes unproductive for your analysis and should be removed.
Nevertheless, if data removal becomes necessary, it’s essential to provide a
clear rationale for this decision in a report accompanying your analysis. This
safeguards against allegations of data manipulation or bias. When dealing
with irreplaceable data types or duplicates, consult domain experts before
removal. Data removal is often applied when duplicate data doesn’t
significantly impact the analysis results.

 5. Data Flagging

 In situations where some columns contain missing values that cannot be
entirely eliminated, consider introducing a new column to flag these missing
values. Your algorithm should be designed to recognize and handle flagged
values accordingly. If flagged values are essential for your analysis, you can
impute them or explore better correction methods before incorporating them
into your analysis. If this isn’t feasible, make sure to highlight this in your
report.

 Cleaning erroneous data can be a challenging process, often time-
consuming, but it’s a necessary step to ensure the use of accurate data that
closely reflects actual events. Remember that the ultimate goal is to work
with clean data that provides a reliable representation of reality.

 How to Prevent Data Contamination

 From empty data fields to data duplication and invalid entries, there are
numerous ways in which data contamination can occur. Having examined
potential causes and data cleaning methods, it’s crucial for someone in your
role as an expert to implement measures to prevent future data contamination.
The challenges faced during data cleaning can be largely avoided, especially
when data collection processes are under your control.

 Considering the losses your business may suffer due to contaminated data
and the wastage of resources, implementing these measures can significantly
reduce inefficiencies, ultimately impacting customer satisfaction:

 1. Proper Configurations

 Regardless of the data handling tools used, ensuring proper configuration
is essential. Whether you’re using CRM software or simple Excel sheets, start
by verifying the accuracy and completeness of critical information.
Incomplete data can lead to inaccuracies when others attempt to complete it
with incorrect data, distorting the true picture. Data integrity is equally
important, so set appropriate data access privileges to maintain data accuracy.
Define valid data ranges to prevent incorrect entries, and set up a notification
system to alert users when incorrect data is entered.

 2. Proper Training

 Human error poses a significant risk when it comes to preventing data
contamination. Training all individuals handling data on proper data entry
procedures is vital. This helps improve accuracy and data integrity right from
the data entry stage. Ensure your team understands the challenges associated
with using contaminated data and why meticulous data entry is essential. If
your organization uses CRM software, make sure team members are familiar
with different functionality levels to ensure the right type of data is entered.

 3. Entry Formats

 Data format consistency is as crucial as data accuracy. Encourage
everyone involved in data handling to use the correct format. Ensure these

formats are user-friendly and remind the team to update any data that doesn’t
conform to the correct format. These small changes go a long way in
simplifying data analysis.

 4. Empower Data Handlers

 Apart from training, empower your team members by assigning a data
advocate role. This person serves as the data administrator and ensures
consistency in data handling. They devise plans for data cleaning and
organization, including proper data collection procedures, improving the
usability of the collected data.

 5. Overcoming Data Duplication

 Data duplication often occurs when the same data is processed at different
levels. Implement search processes that yield extensive results, reducing the
likelihood of data duplication. For example, beyond searching for a
customer’s name, include contact information in the search criteria.
Additionally, provide multiple relevant search fields to increase the chances
of identifying and avoiding duplicates. When duplicates are found,
investigate and update the correct entry accordingly. Consider implementing
measures that alert users to potential duplicate entries in your database.

 6. Data Filtration

 Preemptive data cleaning at the entry point is an effective strategy.
Establish clear guidelines for the correct data format to use, allowing you to
handle data cleaning during data entry rather than after it’s in your database.
Create filters to determine which data should be collected immediately and
which can be updated later.

 Avoid collecting unnecessary information to maintain the quality and
accuracy of your database. Taking these precautionary measures in data
handling can help prevent the dissemination of misinformation due to
inaccurate data. Data security is equally important, especially when multiple
users have access to data sources. Restrict access where possible and assign
different access privileges to users.

 By implementing these strategies, you can significantly reduce the risk of
data contamination and ensure the use of high-quality data for informed
decision-making.

7

Data Visualization with Matplotlib in Python

 Data visualization is an essential initial step in data analysis. When you
first encounter data, your mind starts to form a rough vision of how it should
be presented graphically.

 Matplotlib may appear complex initially, but with basic coding
knowledge, it becomes more manageable. Many beginner concepts have
already been covered in earlier books in this series. Nevertheless, let’s revisit
some crucial concepts that will guide your future work.

 When plotting data for visualization, you’ll often work with various data
ranges, whether general or specific. Matplotlib’s primary purpose is to
facilitate working with data while minimizing challenges. As a data analyst,
you have full control over the data you use, so understanding the necessary
commands to manipulate it is crucial.

 It’s worth noting that Matplotlib’s machine learning environment is quite
similar to MATLAB. If you have experience with MATLAB, you’ll find it
easier to work here. Matplotlib’s structure is hierarchical, with a state-
machine environment at the highest level and object-oriented interfaces at the
lowest level, where pyplot performs limited functions. At this level, you can
construct figures and create axes, which will assist in most of your plotting
tasks.

 To install Matplotlib on your machine, use the following Python
commands:
     ```python
     python -m pip install -U pip
     python -m pip install -U matplotlib
     ```
 To get started, install Matplotlib on your device with these commands:
     ```python
     pip install matplotlib
     xcode-select -install (if you are working on a Mac)
     ```
 Depending on your needs, you may also need to install additional
dependencies like NumPy, Python (if not already installed), Tornado, pycairo,
ImageMagick, or other packages to enhance your interface output.

 Fundamental Matplotlib Concepts
 Here are essential concepts you’ll encounter and utilize in Matplotlib,
along with their meanings or roles:
 - Axis: Represents a number line and defines the graph’s limits.

 - Axes: Represent plots within a figure. A single figure can contain
multiple axes, and in 3D objects, you can have two or three axes. All axes

must have x and y labels.
 - Artist: Encompasses everything visible on your figure, such as collection
objects, Line2D objects, and Text objects. Most artists reside on the axes.
 - Figure: Refers to the entire figure you’re working on, which may include
multiple plots or axes.

 Pyplot, a Matplotlib module, enables you to work with simple functions
and add elements like text, images, and lines to your figure. A basic plot can
be created as follows:
     ```python
     import matplotlib.pyplot as plt
     import numpy as np
     ```


 Basic Matplotlib Functions

 Matplotlib offers numerous command functions that allow you to work
with it similarly to MATLAB. Each pyplot function modifies figures in some
way when executed. Here’s a list of the plots you can create in Matplotlib:

 - Quiver: Creates 2D arrow fields.
 - Step: Generates a step plot.
 - Stem: Constructs a stem plot.
 - Scatter: Creates a scatter plot of x against y.
 - Stackplot: Produces a stacked area plot.
 - Plot: Adds markers or plot lines to your axes.
 - Polar: Creates a polar plot.
 - Pie: Generates a pie chart.
 - Barh: Creates a horizontal bar plot.

 - Bar: Produces a bar plot.
 - Boxplot: Constructs a whisker and box plot.

 - Hist: Creates a histogram.
 - Hist2d: Generates a 2D histogram plot.

 When working on data analysis, you’ll frequently use the following image
functions:
 - Imshow: Displays images on your axes.
 - Imsave: Saves arrays as image files.
 - Imread: Reads image files into arrays.

 Plotting Function Inputs

 Before creating a plot, import the Pyplot module from your Matplotlib
package:
     ```python
     import matplotlib.pyplot as plt
     ```


 Next, introduce arrays into the plot. Utilize NumPy’s predefined array
functions for this purpose, imported as follows:
     ```python
     import numpy as np
     ```


 With the data in place, specify the x and y axis labels, and the plot title:
     ```python
     plt.xlabel(“angle”)
     plt.ylabel(“sine”)
     plt.title(‘sine wave’)

     ```


 To view the window, use the show() function:


     ```python
     plt.show()
     ```


 At this point, your program should resemble the following:
     ```python
     from matplotlib import pyplot as plt
     import numpy as np
     import math # for defining pi

 
     x = np.arange(0, math.pi * 2, 0.05)
     y = np.sin(x)
     plt.plot(x, y)
     plt.xlabel(“angle”)
     plt.ylabel(“sine”)
     plt.title(‘sine wave’)
     plt.show()
     ```


 Basic Matplotlib Plots

 Before plotting in Matplotlib, ensure you have a plot() function within the
matplotlib.pyplot subpackage. This function provides the basic plot with x-
axis and y-axis variables.

 Alternatively, you can use format parameters to specify the line style. To
discover available format parameters and options, use the following
commands:
     ```bash

     $ ipython -pylab
     In [1]: help(plot)



     ```


 In the example above, two distinct lines are created. The first one uses a
solid line style, while the second employs a dashed line. Here’s how to create
a simple plot:
     ```python
     import matplotlib.pyplot as plt
     import numpy as np

 
     x = np.linspace(0, 20)
     plt.plot(x, .5 + x)
     plt.plot(x, 1 + 2 * x, ‘—’)
     plt.show()
     ```


 To plot the lines described above:

 Step 1: Determine the x coordinates using linspace(), a NumPy function,
starting at 0 and ending at 20:
     ```python
     x = np.linspace(0, 20)
     ```


 Step 2: Plot the lines on your axis in this order:
     ```python
     plt.plot(x, .5 + x)
     plt.plot(x, 1 + 2 * x, ‘—’)
     ```


 Step 3: You can either save the plot using savefig() or view it on the screen
using show(). To view it on the screen, use:


     ```python
     plt.show()
     ```


 Logarithmic Plots (Log Plots)

 Logarithmic plots are similar to basic plots but use a logarithmic scale.
There are two types: log-log plots (both x and y axes are logarithmic) and
semi-log plots (one axis is logarithmic, the other linear).

 In Matplotlib, you can create log-log plots using
`matplotlib.pyplot.loglog()`. For semi-log plots, use `semilogx()` for the x-
axis and `semilogy()` for the y-axis. These are useful for identifying
exponential relationships.

 The provided code snippet below demonstrates data related to transistor
counts within a specified range of years. We will employ this code to explore
the process of creating logarithmic plots:


     ```python
     import matplotlib.pyplot as plt



     import numpy as np
     import pandas as pd

 
     # Read data from ‘transcount.csv’
     df = pd.read_csv(‘transcount.csv’)

 
     # Group the data by ‘year’ and compute the mean
     df = df.groupby(‘year’).aggregate(np.mean)

 
     # Extract the years and transistor counts
     years = df.index.values
     counts = df[‘trans_count’].values

 
     # Fit a polynomial to the logarithm of counts
     poly = np.polyfit(years, np.log(counts), deg=1)

 
     print(“Poly”, poly)

 
     # Create a semilog plot
     plt.semilogy(years, counts, ‘o’)
     plt.semilogy(years, np.exp(np.polyval(poly, years)))

 
     # Display the plot
     plt.show()
     ```


 Step 1:
 Generate the data using the following functions:
     ```python
     poly = np.polyfit(years, np.log(counts), deg=1)



     print(“Poly”, poly)
     ```


 Step 2:
 Based on the obtained data fit, you should have a polynomial object with
coefficients arranged in descending order.

 Step 3:
 To analyze the created polynomial, utilize the NumPy function `polyval()`.
Plot the data using a semi-logarithmic scale on the y-axis as follows:
     ```python
     plt.semilogy(years, counts, ‘o’)
     plt.semilogy(years, np.exp(np.polyval(poly, years)))
     ```


 Scatter Plots:

 Scatter plots serve to reveal relationships between two variables displayed
on a coordinate system. Each data point represents variable values, allowing
you to discern correlations. The direction of the trend in a scatter plot
indicates the nature of the correlation; an upward trend signifies a positive
correlation. Scatter plots can also be employed alongside bubble charts,
introducing a third variable. Bubble chart size around data points signifies the
third variable’s value.

 In Matplotlib, scatter plots are accessed via the `scatter()` function. To
access the scatter function’s documentation, you can use the following
commands:
     ```python
     $ ipython -pylab
     In [1]: help(scatter)



     ```


 In the example below, three parameters are introduced: ‘s’ to denote
bubble size, ‘alpha’ for bubble transparency, and ‘c’ for colors. The ‘alpha’
values range from 0 (completely transparent) to 1 (completely opaque).
Here’s the code:
     ```python
     import matplotlib.pyplot as plt
     import numpy as np
     import pandas as pd

 
     # Read data from ‘transcount.csv’
     df = pd.read_csv(‘transcount.csv’)

 
     # Group the data by ‘year’ and compute the mean
     df = df.groupby(‘year’).aggregate(np.mean)

 
     # Read data from ‘gpu_transcount.csv’
     gpu = pd.read_csv(‘gpu_transcount.csv’)

 
     # Group the GPU data by ‘year’ and compute the mean
     gpu = gpu.groupby(‘year’).aggregate(np.mean)

 
     # Merge the CPU and GPU data
     df = pd.merge(df, gpu, how=‘outer’, left_index=True, right_index=True)

 
     # Replace NaN values with 0
     df = df.replace(np.nan, 0)

 
     years = df.index.values



     counts = df[‘trans_count’].values
     gpu_counts = df[‘gpu_trans_count’].values
     cnt_log = np.log(counts)

 

     plt.scatter(years, cnt_log, c=200 * years, s=20 + 200 * gpu_counts /
gpu_counts.max(), alpha=0.5)

 
     # Display the scatter plot
     plt.show()
     ```


 Display Tools in Matplotlib:

 Various display tools can enhance your understanding of a plot. Legends
identify data series, while annotations highlight key plot points. Labels, grids,
and titles are additional display tools. Labels for the x and y axes are set using
`xlabel()` and `ylabel()`, while the plot title is defined with `title()`. The grid
can be enabled or disabled as needed.

 Matplotlib operates in three layers: the scripting layer (pyplot), the artist
layer, and the backend layer. Each layer communicates with the one below it,
but not with the one above, resulting in unidirectional communication.

 Pylab, installed with Matplotlib, allows you to use pyplot and NumPy in
the same namespace without importing NumPy separately. If you have pylab
imported, you don’t need to call NumPy and pyplot functions separately.

 The role of the pyplot package is to facilitate Python programming
through the Matplotlib library.

 How to Create a Chart:
 To create a chart, import pyplot as follows:
     ```python

     import matplotlib.pyplot as plt
     ```


 You can then plot data as shown:
     ```python
     plt.plot([1, 2, 3, 4])
     ```


 To display the plot, use `plt.show()`. The result is a chart displaying the
data points. Depending on the platform, you may not need to call `show()` in
some cases, particularly with iPython QtConsole.

 Once your plot is prepared, provide definitions for the x and y axes. The
blue line represents the data points in the absence of a legend, axis labels, or a
title.
 Utilizing Multiple Axes and Figures

 In addition to employing pyplot commands for individual figures, you
have the capability to manage numerous figures simultaneously within
Matplotlib. Furthermore, you can take it a step further by incorporating new
plots into each figure. Apart from utilizing multiple subplots, the subplot()
function is at your disposal to generate multiple drawing regions within the
primary figure.

 The subplot() function also facilitates the selection of the specific subplot
to concentrate your efforts on. Once chosen, any commands you issue will be
executed on the currently selected subplot. A closer examination of the
subplot() function reveals three integers, each serving a distinct purpose.

 The initial integer defines the number of vertical divisions available in the
figure. The second integer specifies the number of horizontal divisions within
the figure. The third integer designates the subplot where your commands are
applied.

 Input
 t = np.arange(0, 5, 0.1)
 : y1 = np.sin(2 * np.pi * t)
 : y2 = np.sin(2 * np.pi * t)
 Input
 plt.subplot(211)
 : plt.plot(t, y1, ‘b-.’)
 : plt.subplot(212)
 : plt.plot(t, y2, ‘r—’)
 The resulting plot should resemble the following:

 In the subsequent example, we will establish vertical divisions for the
aforementioned plots using the provided code.

 Input
 t = np.arange(0., 1., 0.05)
 : y1 = np.sin(2 * np.pi * t)
 : y2 = np.cos(2 * np.pi * t)

 Input
 plt.subplot(121)
 : plt.plot(t, y1, ‘b-.’)
 : plt.subplot(122)
 : plt.plot(t, y2, ‘r—’)
 The resulting plot should be as follows:

 Incorporating Fresh Elements into Your Graph

 Charts are intended to enhance the visual appeal of your data. To achieve
this, it is crucial to select the appropriate chart type that effectively represents
your data, as not all charts are suitable for all data types. Basic lines and
markers may not suffice to create visually appealing charts. Consider
incorporating additional elements into your chart to accomplish this goal.

 How to insert text into a chart

 The title() function allows you to introduce a detailed title into your chart,
as demonstrated earlier. Moreover, you should be able to include axis labels
using the xlabel() and ylabel() functions.

 Keep in mind that when you introduce new functions like the axis label
functions, they become part of the code string you are working with. Initially,
you should add the axis labels to your chart because they provide context for
the values assigned to each axis during data plotting. The example below
illustrates this concept:

 Input
 plt.axis([0, 5, 0, 20])

 : plt.title(‘My first plot’)
 : plt.xlabel(‘Counting’)
 : plt.ylabel(‘Square values’)
 : plt.plot([1, 2, 3, 4], [1, 4, 9, 16], ‘ro’)
 The resulting plot should appear as follows:

 You can perform basic edits on all the text you input to describe the plot.
Basic editing encompasses modifications such as altering the font, adjusting
font size, changing colors, or implementing any other tweaks necessary to
enhance the chart’s appeal.

 Following the preceding example, you can further customize the title as
demonstrated below:

 Input
 plt.axis([0, 5, 0, 20])
 : plt.title(‘My first plot’, fontsize=18, fontname=‘Comic Sans MS’)
 : plt.xlabel(‘Counting’, color=‘black’)
 : plt.ylabel(‘Square values’, color=‘black’)
 : plt.plot([1, 2, 3, 4], [1, 4, 9, 16], ‘ro’)

 The Matplotlib functionality provides extensive options for refining your
chart. For instance, you can introduce new text into the chart using the text()
function, which is defined as text(x, y, s, fontdict=None, **kwargs).

 In the above-mentioned function, the coordinates x and y denote the text’s
placement within the chart. The variable s represents the text string to be

added at the specified location. While the fontdict() function specifies the font
style for the new text, it is not obligatory. Once you have these parameters in
place, you can introduce keywords into the code. Refer to the example below
for clarification:

 Input
 plt.axis([0, 5, 0, 20])
 : plt.title(‘My first plot’, fontsize=20, fontname=‘Times New Roman’) …:
 plt.xlabel(‘Counting’, color=‘gray’)
 : plt.ylabel(‘Square values’, color=‘gray’)
 : plt.text(1, 1.4, ‘First’)
 : plt.text(2, 4.4, ‘Second’)
 : plt.text(3, 9.4, ‘Third’)
 : plt.text(4, 16.4, ‘Fourth’)
 : plt.plot([1, 2, 3, 4], [1, 4, 9, 16], ‘ro’)
 Your plot should now feature the following customizations:

 Matplotlib is purpose-built for seamlessly incorporating mathematical
expressions into your work using LaTeX expressions. When correctly
formatted, the interpreter will recognize and convert these expressions into
the corresponding mathematical graphics. This is particularly useful for
introducing formulas, equations, or other specialized characters into your
plot.

 When composing LaTeX expressions, remember to prefix them with an ‘r’
to ensure the interpreter reads them as raw text.

 Input
 plt.axis([0, 5, 0, 20])

 : plt.title(‘My first plot’, fontsize=20, fontname=‘Times New Roman’) …:
 plt.xlabel(‘Counting’, color=‘gray’)

 : plt.ylabel(‘Square values’, color=‘gray’)
 : plt.text(1, 1.4, ‘First’)
 : plt.text(2, 4.4, ‘Second’)
 : plt.text(3, 9.4, ‘Third’)
 : plt.text(4, 16.4, ‘Fourth’)
 : plt.text(1.1, 12, r’$y = x^2$‘, fontsize=20, bbox={‘facecolor’: ‘yellow’,
‘alpha’: 0.2})
 : plt.plot([1, 2, 3, 4], [1, 4, 9, 16], ‘ro’)
 Your plot should now include the expression ‘y = x^2’ within a yellow
background, as depicted below:

 Adding a Grid to Your Chart

 Frequently, you can access online tools to create charts that allow you to
effortlessly toggle gridlines on or off. This capability is also available in
Python. A grid is a valuable aid in your work, as it provides a visual reference
for the plotted points on the chart. To introduce a grid, simply employ the
grid() function and set it to ‘True’ as follows:

 Input
 plt.axis([0, 5, 0, 20])
 : plt.title(‘My first plot’, fontsize=20, fontname=‘Times New Roman’) …:
 plt.xlabel(‘Counting’, color=‘gray’)
 : plt.ylabel(‘Square values’, color=‘gray’)
 : plt.text(1, 1.4, ‘First’)
 : plt.text(2, 4.4, ‘Second’)
 : plt.text(3, 9.4, ‘Third’)

 : plt.text(4, 16.4, ‘Fourth’)
 : plt.text(1

8

Testing Hypotheses with SciPy

 Hypothesis testing stands as a pivotal statistical technique applicable in
data analysis, serving as a guide for analysts in making informed and
statistically sound decisions regarding the datasets under scrutiny. In essence,
hypothesis testing involves formulating an assumption about a particular
aspect and subsequently employing data to ascertain the veracity of this
assumption. For instance, you might postulate that the average age of students
in your class is 25 years. From this conjecture, data is utilized to validate or
refute this hypothesis.

 These hypothetical suppositions are inherently theoretical, necessitating
substantiation through statistical information. The determination of their
accuracy or falsity hinges on the outcome of mathematical computations.

 Essential Principles of Hypothesis Testing

 Hypothesis testing ranks among the foremost statistical methodologies for
data analysis. It revolves around the evaluation of mutually exclusive events
related to a specific population under investigation and discerning which of
these assertions aligns with the available data.

 Following this analysis, one can then conclude the statistical significance
of a particular finding after successfully passing the hypothesis test. Such
tests pivot around the fundamental concepts of normalization and
standardization, forming the bedrock upon which any hypothesis is
constructed.

 In statistical terms, normalization pertains to the procedure of evaluating
and adjusting observed values to ensure they conform to a common scale,
facilitating the application of other statistical measures like averaging.

 In a normal distribution, variables assume the shape of a standard bell
curve, and the graph illustrating this distribution is referred to as a normal
curve. In a normal curve, three crucial parameters must be congruent: mode,
median, and mean.

 The formula for a normal distribution is as follows:
 xnew = x – x min / (xmax – xmin)

 Within a standard normal distribution, a normal curve is maintained, with
a standard deviation of 1 and a mean of 0.

 Null Hypothesis

 During the course of hypothesis testing, you will inevitably encounter the
null hypothesis. This represents the default stance, signifying the absence of a
relationship between the variables in question. It can also denote the lack of
association between two groups. The null hypothesis, therefore, is an
assumption derived from basic knowledge of the subject matter and lacks
statistical backing. For instance, you might assume that a car dealership sells
20 units per month, without any credible data to substantiate this assertion.

 Alternative Hypothesis

 An alternative hypothesis serves as the statement used to challenge the
null hypothesis. Typically, the alternative hypothesis contradicts the presented
null hypothesis. From this statement, a decision must be made regarding the
acceptance or rejection of the null hypothesis based on the likelihood of the
alternative hypothesis being valid.

 The significance level denotes the extent to which one accepts or rejects
the null hypothesis. In logical terms, it is impossible to affirm or negate any
hypothesis with absolute certainty. Therefore, the significance level is often
set at 5%, represented by the symbol alpha (α), typically calculated as 5% or
0.05. Consequently, the output under consideration should provide a 95%
confidence level for evaluation.

 Errors

 Two types of errors may arise during hypothesis testing: type I and type II
errors. A type I error entails rejecting the null hypothesis even when it is true,
represented by alpha (α). In a normal curve, this critical region is commonly
known as the alpha region.

 On the other hand, a type II error entails accepting the null hypothesis
even when it is false, represented by the beta (ß) symbol. In a normal curve,
this acceptance region is referred to as the beta region.

 The results obtained from a hypothesis test and the subsequent decision to
accept or reject those results are not immutable. Decisions must be made
thoughtfully in light of the evidence provided by the hypothesis test, bearing
in mind that the evidence may not always be robust enough to guarantee the
correct decision. This can lead to the occurrence of one of the aforementioned
errors.

 To illustrate, consider the diagram below:

 [Insert diagram description here]

 From our illustration, the red sections represent type I errors, suggesting
that the alternative hypothesis aligns with the null hypothesis when a two-
sided test is employed for this data, at a 95% confidence level.

 The blue section of this plot signifies a type II error, occurring when the
null hypothesis does not correspond to the alternative hypothesis. In
hypothesis testing, a t-test is a vital tool for discerning disparities between
population and sample averages.

 Procedure for Hypothesis Testing

 Before embarking on hypothesis testing, it is essential to adhere to specific
protocols to ensure the reliability of your findings.

 Firstly, you must formulate both a null hypothesis (usually denoted as H0)
and an alternative hypothesis (represented as H1). These statements serve as
the focal points for your investigation. The primary objective in testing the
null hypothesis is to determine whether it is incorrect. In the alternative
hypothesis, you articulate a statement that contradicts the null hypothesis.

 The next step is to establish a decision-making criterion based on your
chosen significance level. This criterion will guide you in assessing the
validity of the null or alternative hypothesis. It’s important to note that the
same hypothesis may be accepted at a 4% probability level while being
rejected at a 5% significance level. By defining this criterion beforehand, you
establish a framework for your analysis.

 Subsequently, you need to evaluate the probabilities associated with the
available data, which is achieved through a probability test statistic. This
statistic helps quantify the likelihood of a particular event occurring. A higher
probability indicates a greater chance that the null hypothesis is true, based on
the available evidence.

 Finally, you must make a decision based on the obtained results. In this
decision-making process, you compare the results against the predetermined
significance level. If the null hypothesis’s probability is lower than the
significance level, you reject it.

 It’s crucial to be aware of the potential for accepting an incorrect result
when working with a sample population. Since the sample represents only a
random subset of the overall population, including data from the entire
population may significantly alter the results and lead to the alternative
hypothesis being true.

 In summary, there are four possible outcomes when evaluating the null
hypothesis:

 You may correctly uphold the null hypothesis.
 You may encounter a Type II error by incorrectly maintaining an invalid
null hypothesis.
 You may correctly reject the null hypothesis.
 You may encounter a Type I error by incorrectly rejecting a valid null
hypothesis.

 Statistical hypothesis testing is a critical component of data analysis as it
helps determine whether the data aligns with a predefined norm. The nature
of any deviation can provide valuable insights into the data.

 In hypothesis testing, all assumptions start with the null hypothesis, which
posits no relationship between the variables being studied. The specific form
of the null hypothesis depends on the type of test being conducted. For
instance, if you are testing whether two groups are dissimilar, the null
hypothesis would state that the two groups are similar.

 The primary goal of a hypothesis test is to ascertain whether the null
hypothesis remains valid when analyzing a particular dataset. If, after
analysis, there is insufficient evidence to refute the null hypothesis, it is
accepted. Similar to the null hypothesis, the alternative hypothesis is tailored
to the specific data being analyzed.

 Once the alternative and null hypotheses are defined, you can establish a
significance level, a threshold that guides whether to accept or reject the
results.

 One-Sample T-Test

 The objective of this test is to determine whether the mean of a sample
population closely matches the mean of the entire population within the
dataset under investigation. To illustrate this concept, we will use fictional
age data from registered voters in two different regions, x and y, and evaluate
whether there is a significant difference in their average ages.

 Please execute the following code:


     ```python
     %matplotlib inline
     import numpy as np
     import pandas as pd
     import scipy.stats as stats
     import matplotlib.pyplot as plt
     import math

 
     np.random.seed(6)
     x_age1 = stats.poisson.rvs(loc=18, mu=35, size=150000)
     x_age2 = stats.poisson.rvs(loc=18, mu=10, size=100000)
     x_age = np.concatenate((x_age1, x_age2))
     y_age1 = stats.poisson.rvs(loc=18, mu=30, size=30)
     y_age2 = stats.poisson.rvs(loc=18, mu=10, size=20)
     y_age = np.concatenate((y_age1, y_age2))

 
     print(x_age.mean())

     print(y_age.mean())
     ```


 From the distribution above, we can conduct a t-test to assess the validity
of our hypothesis at a 95% confidence level.

 For this purpose, we will utilize the `stats.ttest_1samp()` function as
shown below:


     ```python
     stats.ttest_1samp(a=y_age, popmean=x_age.mean())
     ```


 The output will provide a statistic value, which signifies the deviation of
the mean from the applied null hypothesis. If the t-test result falls outside the
t-distribution quantile corresponding to your confidence level, it is advisable
to reject the hypothesis.

 To determine this quantile, you can use the `stats.t.ppf()` function, like so:


     ```python
     stats.t.ppf(q=0.025, df=49) # For the desired confidence level and degrees
of freedom
     ```


 From this analysis, if the p-value is lower than the significance level, the
appropriate action is to reject the null hypothesis.

 By increasing the confidence level, you expand the confidence interval,
making it more likely to capture the true population mean. Consequently, if
the significance level is lower than the p-value, you accept the null
hypothesis.

 Two-Sample T-Test Explained
 The two-sample t-test serves as a means to ascertain the similarity or
dissimilarity between two independent data samples. Within this test, our null
hypothesis posits that the means of the two sample groups are alike.

 Distinguishing it from the one-sample t-test, where we compare a sample
against the entire population, the two-sample t-test instead compares one
sample against another, bypassing the population.

 For this test, we employ the stats.ttest_ind() function. We create a separate
set of sample data for County M, which we subsequently compare against
sample voter registration data for County Y, as outlined in the one-sample t-
tests mentioned earlier.

 Input
     ```python
     np.random.seed(12)

     m_age1 = stats.poisson.rvs(loc=18, mu=33, size=30)
     m_age2 = stats.poisson.rvs(loc=18, mu=13, size=20)
     m_age = np.concatenate((m_age1, m_age2))
     print(m_age.mean())



     ```
 Output
     ```
     42.8
     ```


 Input
     ```python
     stats.ttest_ind(a=y_age, b=m_age, equal_var=False) # samples share
similar variance
     ```
 Output
     ```
     Ttest_indResult(statistic=-1.7084, pvalue=0.0907)
     ```


 Based on the derived p-value, there is only a 9% chance that when
comparing the population means of the two samples, we can determine their
similarity. Should we employ a 95% confidence interval, the null hypothesis
will prevail, as the 5% significance level exceeds the data’s p-value.

 Understanding the Paired T-Test

 The previously discussed tests considered data from two separate
population sample groups. However, there are instances where you need to
analyze sample data from the same group but at different time intervals. This
is essential for comprehending changes within the study group.

 For example, teachers might want to gauge whether students have
improved their knowledge of a subject by assessing their performance before
and after an exercise. In such cases, it is prudent to employ a paired t-test to

determine the similarity of sample performance data within the same group at
distinct intervals.

 For this study, we utilize the scipy function stats.ttest_rel(). First, let’s
generate sample performance results for this test.

 Input
     ```python
     np.random.seed(11)
     before_exercise = stats.norm.rvs(scale=30, loc=250, size=100)
     after_exercise = before_exercise + stats.norm.rvs(scale=5, loc=-1.25,
size=100)
     performance_df = pd.DataFrame({“performance_before”:
before_exercise,
     “performance_after”: after_exercise,
     “performance_change”: after_exercise - before_exercise})
     performance_df.describe()
     ```
 Output
     ```
     performance_after performance_before performance_change
     count 100.000000 100.000000 100.000000
     mean 249.115171 250.345546 -1.230375

     std 28.422183 28.132539 4.783696
     min 165.913930 170.400443 -11.495286
     25% 229.148236 230.421042 -4.046211
     50% 251.134089 250.830805 -1.413463
     75% 268.927258 270.637145 1.738673
     max 316.720357 314.700233 9.759282
     ```


 Based on the summary above, it’s evident that, on average, students lost
1.23 points after the exercise. We can now perform a paired t-test to
determine whether this information is statistically significant at a 95%
confidence level.

 Input
     ```python
     stats.ttest_rel(a=before_exercise, b=after_exercise)
     ```
 Output
     ```
     Ttest_relResult(statistic=2.5720, pvalue=0.01160)
     ```


 From the p-value results above, we can infer that there’s only a 1% chance
of observing a significant difference between the two population samples.

 Utilizing SciPy

 As a data analyst, you’ll encounter diverse data from various studies
throughout your work. Some of this data may be technical, while others may
be scientific, depending on the research objectives and data collection
methods employed. Managing and performing mathematical computations on
large datasets can be challenging. This is where large supercomputers come
into play, specifically designed for such tasks.

 One of the most convenient ways to handle technical data is through
SciPy, a Python library designed to manage such data effectively. A
noteworthy aspect of SciPy is its open-source nature, allowing you to use it
without incurring any costs. SciPy offers several data science-relevant
features that you’ll find valuable.

 Installing SciPy

 The installation process depends on your operating system. The following
instructions will guide you through installing SciPy in Python based on your
device’s requirements.

 You can install SciPy using pip, a widely recognized package manager in
most common operating systems. Before using pip for installation, ensure that
Python is installed on your computer. Once Python is set up, execute the
following command:

 For Windows operating systems:
     ```
     Python -m pip install —user numpy scipy
     ```


 This command installs SciPy in the user directory, rather than the system
directories, denoted by the `—user` flag.

 For Mac systems, use the following commands:

     ```
     sudo port install py35-scipy py35-numpy
     ```


 The `sudo` command allows you to install and run programs with elevated
privileges.

 For Linux operating systems, you can install SciPy with the following
commands:


     ```
     sudo apt-get install python-scipy python-numpy
     ```


 Once SciPy is installed, you can proceed to the next steps.

 SciPy Modules

 In your role as a data analyst, you’ll encounter various programs and tools
for performing scientific and mathematical operations in Python. SciPy offers
a wide range of modules that can assist you in performing tasks, from simple
to complex. Here are some of the packages you’ll be using:

 Package Function
 - Special function scipy.special
 - Spatial data structures and algorithms scipy.spatial
 - Sparse scipy.sparse
 - Statistics scipy.stats
 - Signal processing scipy.signal
 - Integration scipy.integrate
 - Interpolation scipy.interpolate
 - Input/output scipy.io

 - Multidimensional image processing scipy.ndimage
 - Linear algebra scipy.linalg
 - Optimization scipy.optimize
 - Fast Fourier transformation scipy.fftpack

 To begin working with SciPy, you need to import it. The import procedure
remains consistent for all sub-packages. Simply replace the package `signal`
with the desired module you intend to use. The import instructions are as
follows:


     ```python
     import numpy as np
     from scipy import signal
     ```


 Integration with SciPy

 The `scipy.integrate` sub-package is crucial for performing numerical
integration computations. The functions used in this package are outlined in
the section above.

 For general-purpose integration, also known as a single integral, where
your dataset has only one variable between two endpoints, you can use the
`quad` function. For instance, if you have information about data integrals
represented by a function of 12x between two points, 0 and 1, the single
integration would appear as

9

Data Mining in Python

 There are numerous analytical choices available when working with any
given dataset. The process of extracting predictive insights from these
datasets is referred to as data mining. It stands as one of the most demanding
tasks for any data scientist, yet it remains essential. Raw data can be
interpreted in various ways, making it crucial to derive accurate deductions
from it. Each dataset harbors distinct fragments of information that, with the
right analytical approach, can be harnessed to make precise predictive
decisions.

 In the realm of Python, a plethora of tools exists for data mining purposes.
This intricate procedure encompasses activities such as data cleaning and
organization, as discussed earlier in this book. It underscores the importance
of validating the credibility and integrity of data before its utilization.

 At its core, data mining involves the study of data and the construction of
models that enable accurate generalizations about a subject. This concept is
closely intertwined with numerous other machine learning processes reliant
on predictive analysis. These data models can respond to new inputs based on
previous data, facilitating appropriate actions. For instance, if a system holds
financial data about your US accounts, any transaction outside that
jurisdiction would be met with suspicion and flagged for further scrutiny and
analysis.

 Data mining proves invaluable in numerous scenarios, ranging from social
media studies to businesses investigating and dissecting consumer
preferences. It offers vital insights that can inform significant decision-
making.

 Methods of Data Mining

 The creation of predictive models is feasible from various datasets, each
crafted using a distinct methodology. Here are some common techniques
employed in data mining:

 1. Regression Analysis

 This entails the examination and evaluation of relationships between
different variables. The focus lies on understanding these relationships while
simultaneously minimizing errors.

 2. Cluster Analysis

 In this process, analysts delve into distinct data groups, aiming to
comprehend them based on their unique characteristics. Clusters are formed
according to specific attributes, and members of each cluster are expected to
exhibit similar behaviors.

 3. Data Classification

 Data classification involves categorizing data into specific groups based
on predefined criteria. Once the categories are established, data meeting these
criteria are allocated to their respective categories. An example of this is
spam email filtering.

 4. Analyzing Outliers

 This process entails the investigation of outliers to uncover the reasons
behind their existence. Outliers typically surface in a dataset when certain
data deviates from the expected pattern, failing to align with a predetermined
trend.

 5. Correlation and Association Analysis

 The study of data is conducted to ascertain relationships between different
variables, particularly those with less evident connections. For example, the
famous Walmart beer-diaper case study revealed an unexpected correlation
between beer and diaper sales on Friday evenings. Further examination
revealed that this apparent correlation was due to the fact that most men
buying diapers on Fridays were young or new fathers who decided to pick up
some beer as well.

 Building a Regression Model

 Before constructing a regression model, it’s essential to determine the
specific problem you aim to address, as each problem necessitates a tailored
approach. In the following examples, we will utilize the King County House
Sales dataset to explore the relationship between various variables and house
prices in King County.

 To get started, ensure you have Jupyter installed on your device. Jupyter is
an iPython processor that is part of the Anaconda distribution, which
simplifies the process by including Jupyter, Python, and various libraries
useful for data analysis and scientific computing.

 Download the latest Anaconda version for Python and follow the
installation instructions. Once installed, run the following command:
     ```
     jupyter notebook
     ```


 This will initiate the notebook server, with the default web application
URL usually set to http://localhost:8888. The notebook dashboard will
display information about the directories, files, and notebooks running on
your server.

 For experienced Python programmers, Jupyter can also be installed via pip
instead of using Anaconda. Before proceeding, ensure you have the latest pip
version installed, as earlier versions may encounter issues with certain
dependencies you’ll be using in the future.

 To install the notebook, use the following command:
     ```
     pip3 install jupyter
     ```


 Additionally, you’ll need Pandas for data restructuring and cleaning, as it
excels at importing data from various file formats and organizing it to suit
your needs. Import the necessary libraries:
     ```python
     import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     import scipy.stats as stats
     import seaborn as sns



     from matplotlib import rcParams
     %matplotlib inline
     ```


 To begin with, we’ve incorporated Matplotlib, NumPy, and SciPy in the
code snippet above. These are valuable tools for tasks such as data
visualization, scientific calculations, and statistical analyses in data
exploration.

 The initial step when dealing with any dataset is to scrutinize it thoroughly
and assess whether it necessitates cleaning and the extent of such cleaning. In
the provided code, we load a dataset from the specified file path and display
its initial records as follows:


     ```python
     import pandas as pd

 
     df = pd.read_csv(’/Users/Admin/Desktop/kc_house_data.csv’)
     df.head()
     ```


 The expected output should resemble this structure:


     ```
     id date price bedrooms bathrooms sqft_living sqft_lot
     0 7129300520 20141013T000000 221900.0 3 1.00 1180 5650
     1 6414100192 20141209T000000 538000.0 3 2.25 2570 7242
     2 5631500400 20150225T000000 180000.0 2 1.00 770 10000
     3 2487200875 20141209T000000 604000.0 4 3.00 1960 5000
     4 1954400510 20150218T000000 510000.0 3 2.00 1680 8080
     ```


 Subsequently, we proceed to identify whether any null values exist in the
dataset using the following code:


     ```python
     df.isnull().any()
     ```


 The expected output should appear like this:


     ```
     id False
     date False
     price False
     bedrooms False
     bathrooms False
     sqft_living False
     sqft_lot False



     dtype: bool
     ```


 Next, we determine the data types of each variable in the dataset to
ascertain whether we are working with numerical data. This information is
crucial for subsequent analysis:


     ```python
     df.dtypes
     ```


 The output should resemble this:


     ```
     id int64
     date object
     price float64
     bedrooms int64
     bathrooms float64
     sqft_living int64
     sqft_lot int64
     dtype: object
     ```


 A fundamental step is ensuring proper data processing in Pandas,
especially when dealing with datasets of various data types within columns.
For regression analysis, it’s imperative that all data within a column is
compatible. Often, you’ll encounter data that is not well-structured,
underscoring the importance of understanding these functions.

 Subsequently, we examine the shape of the data, providing an initial sense
of its distribution and credibility. Some data may be corrupted, so it’s prudent
to validate its usability.

 To view all the variables within the dataset, you can use the `df.describe()`
function. Following that, you can create histograms for all variables using
`plt.pyplot.hist()`:


     ```python
     import matplotlib.pyplot as plt

 
     df.describe()
     fig = plt.figure(figsize=(12, 6))
     sqft = fig.add_subplot(121)
     cost = fig.add_subplot(122)
     sqft.hist(df.sqft_living, bins=80)
     sqft.set_xlabel(‘Ft^2’)
     sqft.set_title(“Histogram of House Square Footage”)
     cost.hist(df.price, bins=80)
     cost.set_xlabel(‘Price ($)’)
     cost.set_title(“Histogram of Housing Prices”)
     plt.show()
     ```


 This code generates two histogram distributions: one for housing prices
and another for house square footage. The data distribution appears right-
skewed, which sets the stage for regression analysis.

 To perform a linear regression analysis, we import the `statsmodels`
library and employ the least squares method:


     ```python

     import statsmodels.api as sm
     from statsmodels.formula.api import ols

 
     m = ols(‘price ~ sqft_living’, df).fit()
     print(m.summary())
     ```


 The output provides essential information about the regression model,
including standard error, correlation coefficients, and t-statistics. In this case,
a significant relationship between the two variables is indicated by a high t-
value (144.920), while the P>|t| value is 0%, suggesting a minimal chance of
the relationship occurring by chance or statistical variation.

 Further enhancing the model involves introducing additional independent
variables:


     ```python
     m = ols(‘price ~ sqft_living + bedrooms + grade + condition’, df).fit()
     print(m.summary())
     ```


 This addition of variables increases the R-squared value from 0.493 to
0.555, indicating a more comprehensive perspective of the data.

 Summarily, a regression analysis summary is invaluable for assessing the
accuracy of the model and dataset. It provides crucial insights into the
relationships between variables and their statistical significance.

 Creating Cluster Models

 Similar to our approach when starting with a regression model, the initial
step involves identifying the problem you aim to address through the
development of a cluster model. Clustering revolves around the concept of
categorizing data sets based on predefined criteria.

 Within the dataset, the inherent nature of the data or objects may not be
immediately apparent. Consequently, the responsibility falls on your
shoulders to scrutinize the data and establish clusters that share common
attributes.

 In this particular analysis, we will leverage the Old Faithful geyser dataset,
accessible on GitHub. This dataset encompasses only two variables: the
duration of geyser eruptions in minutes and the time intervals between
eruptions. When working with datasets featuring just two variables, the
optimal choice is often the employment of a k-means clustering approach.

 To embark on this analysis, it is imperative to install Scikit-Learn, a
renowned Python module for data mining and machine learning. Import the
essential modules into your notebook as delineated below:


     ```python
     import pandas as pd
     import numpy as np
     import matplotlib
     import matplotlib.pyplot as plt
     import sklearn
     from sklearn import cluster

     %matplotlib inline



     faithful = pd.read_csv(’/Users/Admin/Desktop/faithful.csv’)
     faithful.head()
     ```


 This dataset is stored locally on your desktop. Subsequently, you will
verify whether the data contains any missing values and handle them if
necessary. However, the dataset in use is devoid of any missing values,
negating the need for such treatment.

 Assign meaningful column names to the dataset:


     ```python
     faithful.columns = [‘eruptions’, ‘waiting’]
     ```


 Visualize the data by generating a scatter plot:


     ```python
     plt.scatter(faithful.eruptions, faithful.waiting)
     plt.title(‘Old Faithful Data Scatterplot’)
     plt.xlabel(‘Length of eruption (minutes)’)
     plt.ylabel(‘Time between eruptions (minutes)’)
     ```


 At this juncture, your data plot should unveil two distinct clusters
representing the two variables. Nevertheless, distinguishing between them
can be challenging. To address this, the introduction of visualization functions
becomes imperative:


     ```python
     faith = np.array(faithful)



     k = 2
     kmeans = cluster.KMeans(n_clusters=k)
     kmeans.fit(faith)
     labels = kmeans.labels_
     centroids = kmeans.cluster_centers_
     ```


 Considering the presence of only two variables, we opt for k=2. The
‘kmeans’ function in this context yields an output from your cluster module.
To differentiate between the two scatter variables, it is crucial to employ
distinct scatter plot colors, as illustrated in the following code snippet:


     ```python
     # Select only observations with cluster label == i
     ds = faith[np.where(labels==i)]
     # Plotting observations
     plt.plot(ds[:,0],ds[:,1],’o’, markersize=7)
     # Plotting centroids
     lines = plt.plot(centroids[i,0],centroids[i,1],’kx’)
     # Enlarge the centroid x’s
     plt.setp(lines,ms=15.0)
     plt.setp(lines,mew=4.0)
     plt.show()
     ```


 Your output should exhibit a clear differentiation of the clusters, with each
represented by distinct colors. Should you introduce additional variables into
your dataset, it becomes possible to employ diverse colors for various
clusters.

 Numerous data mining techniques are available for acquisition, each
serving as a valuable asset when analyzing diverse data types. Familiarity
with the appropriate analytical methods for distinct data categories is crucial,
as the suitability of analytical approaches varies significantly depending on
the specific dataset under examination.

10

Conclusion

 Data analysis holds a significant role in various facets of contemporary
life. From the moment you awaken, you engage with data on multiple
levels. Many pivotal decisions rely on data analytics, and companies
depend on this data to achieve their diverse objectives. As the global
population continues to expand, companies must discover ways to both
maintain customer satisfaction and meet their business targets.

 In the competitive landscape of the business world, keeping customers
content is no easy task. Competitors continuously vie for each other’s
customers, and those who succeed face the challenge of retaining these
customers to prevent them from reverting to their former business
associates. This is precisely where data analysis proves invaluable.

 To gain a deeper understanding of their customers, companies rely on
data collection at every customer touchpoint. This data serves various
purposes, enabling companies to gain insights into their customers’
preferences and needs. By segmenting their customer base based on these
insights, companies can provide more tailored services, aiming to prolong
customer satisfaction.

 Yet, data analytics extends beyond customer-centric profit motives; it
also plays a pivotal role in governance. Governments are the largest
consumers of data worldwide, collecting information on citizens,

businesses, and other entities they interact with. This data is crucial for
numerous purposes, including effective resource allocation and national
security.

 For planning purposes, governments require precise population data to
allocate resources equitably. Achieving such equitable resource
distribution is impossible without thorough data analysis. Furthermore,
data plays a critical role in national security, as governments must
maintain databases for individuals with high profiles requiring special
security measures, as well as potential threats that necessitate continuous
monitoring.

 Data analysis encompasses more than just corporate and government
decision-making; it is a field of great challenge and excitement for
programmers. Data, when unaltered, provides an undeniable truth, making
data analysis skills essential for addressing complex challenges and
solving problems in the field. The way data is handled can have a
significant impact, more significant than one might initially realize.

 Numerous tools are available for data analysis, with many individuals
relying on Microsoft Excel. However, Python offers a solution to Excel’s
limitations, making it a valuable programming language to learn. Python’s
high-level nature, with syntax closely resembling everyday language,
facilitates the mastery of its concepts.

 Experienced programmers move beyond mastering Python’s basics and
utilize it to solve real-world problems through data analysis. Identifying
the underlying issue and devising a data-driven solution are typically the
first steps in tackling these challenges.

 This book follows a series of comprehensive guides introducing data
analysis using Python. Important concepts have been reiterated throughout
the series to reinforce fundamental knowledge. Understanding Python
libraries is crucial, as they are instrumental in becoming an expert data
analyst using Python.

 As you engage with data, you’ll appreciate the significance of data
cleansing to ensure the accuracy of your analyses. You will learn the
process and build upon it to maintain the quality of your work. Another
challenge faced by many organizations is safeguarding data integrity;
implementing procedures to ensure consistent use of clean data is
essential.

 In a world where data is central to many activities, data is generated
and stored in vast quantities daily through automated systems. Learning
data analysis with Python equips you to process data, extract meaningful
insights, and draw significant conclusions. One area where these skills
prove invaluable is forecasting, where predictive models can be developed
to assist organizations in meeting their objectives.

 The quality of data, the data modeling techniques employed, and the
dataset used for analysis are paramount to the success of a predictive
model. Beyond data processing, another critical aspect of data analysis is
data visualization. Effective visualization is about presenting data in a
manner that allows an audience to grasp it immediately. Learning how to
create various visualizations aids in gaining a preliminary understanding
of the data’s nature.

 Upon completing data analysis, you should have a comprehensive data
model supplemented with visual representations that facilitate predictions
and responses before proceeding to the testing phase. Data analysis is a
highly sought-after skill in various fields, and understanding how to
handle data appropriately, when to do so, and why it matters is a skill that
should not be underestimated. Through this knowledge, you can construct
and test hypotheses, ultimately enhancing your understanding of systems.

	Start

